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RADIATIVE ASPECTS OF LUNAR MATERIALS 1-1
CHAPTER I

Introduction

This report is divided into three main chapters, each
with its own references and appendices, with each chapter
paged independently of the others,. In the following two
chapters we discuss the photometric aspects of lunar materials;
in the third chapter the infrared aspects are discussed.

Fine details of the wavelength dependence of lunar radiation
are not considered in this report; rather the two principal
wavelength regions of visible and infrared radiation are
considered separately,

In Chapter II, we discuss an improved photometric function
which appears to represent observations of radiance of the
lunar surface by photometric means, as a function of angle of
incidence, angle of observation, and phase angle to within
rather small limits of error. Calculations of the roct mean
square deviation of the mathematical expression presented here
from the observed radiances, generally vary from 4% to 11%.
This function seems to give a satisfactory representation of
the radiance of the lunar surface. In this function are two-
adjustable parameters—--the normal albedo and a parameter g,
called the compaction parameter, which represents roughly the
degree of porosity of the lunar surface. Values of this com-
paction parameter vary from about .20 to .95 for various types

of surface features.
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In the appendices to Chapter II are given tables from
which may be obtained the total energy reflected per cm2 per
min into all angles, from a surface feature of known normal
albedo and compaction parameter, at any given angle of
illumination from the sun. Because of the complicated nature
of the depeundence of the photometric function on angle, and
because there are so many angles upon which it depends, we
have not computed tables of the photometric function itself
except for certain selected surface features,

In Chapter 3 are placed all derivations of the photo-
metric functions considered for numerical calculations, based
"on a model of the rough lunar surface.

In Chapter 4 we present a mathematical expression which
represents to the best of our ability the directional character-
istics of the infrared radiation.from the lunar surface. A
rigorous derivation of this function is not given; however,
we present a very simple model from which the main features of
‘this mathematical expression follow, A number of comparisous
with observational data--particularly that of Saari and
Shorthill--are given, Generally speaking the error in energy
units of these results is of the order of 5%; in terms of

temperature the error is about a quarter of this.
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NUMERICAL CALCULATIONS OF PHOTOMETRIC FUNCTION

B, W. Hapke1 has given a derivation of a photometric
function for the lunar surface which appears to agree extremely
well with observations. One may wonder then what possible
improvements could be made in this function. We will point
out what appears to be a serious deficiency in Hapke's theoreti-
cal retrodirective function and hence in his photometric function.

First we note that the energy reflected per unit time (in
sec) per unit solid angle from a unit area (in sz) of the

lunar surface is written according to Hapke in the form

S
I(re)(i,t,d.) = —T_?-p(i,s ,1)cose = B(i,e ,n)cose

(1)

where the factor cos€ arises purely from the geometry of the
outgoing ray, SO is the solar constant and p is the radiance
factor. The brightness or radiance B(i,e ,») is given in terms

of the photometric function $(i,e,a) by

S
B(i,6,0) = —2a »(i,e,2) (2)

N\
[y

where a is the normal albedo., The radiance factor p 1is defined

by .




p(i9€ ,G.) = a:p(i,s ,G.) . (3)

According to Hapket!s results the photometric function

may be written as the product of three terms:

plien) = 52— J(a)Ba,e). (%)
The factor cosi/(cosi+cos€) is just the well-known Lommel-
Seeliger laW5.Z(a) is the scattering law of an individual
object, and B(a,g) is the retrodirective function.

A complete discussion of the derivation of the above
expressions is given in Chapter 3; in this chapter we wish
only to discuss the results of numerical calculations performed

using Hapke's retrodirective function, which is given by

fz- tzagm“_e-g/tarﬂ)(B_e—g/tamﬁ)
B(G. 9g) = L
1 > /2

AL /2

(5)

—

Also, the scattering law >(q) is given by

Eka) = %{(ﬁ—a)cos1+sinm}. (6)

Now in comparing the observed radiances with the above
photometric function, Hapke used the data of Fedoret22 for

selected lunar features. This means that the angle of
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observation ¢ is fixed, (since the moon does not rotate while the

angle of incidence i varies) for a particular surface feature.
Quite good fits to the observational data can be obtained, How-
ever by comparing different curves, for different surface features--
and hence for different angles of observation € , one notices a
systematic dependence of the compaction parameter on angle of
observation. For Mare Nectaris, Mare Serenitatis, Ptolmaeus, and
Pitatus which are located at angles ¢ less 35°, Hapke gives the
compaction parameter g = 0.6. For Mare Imbrium and Tycho, which
are located at angles of observation greater than 35°, the com-
paction parameter is O.4.

This apparent dependence of compaction parameter on angle of
observation is made even more evident whem comparing Hapke's photo-

3

metric function to the data of Orlova~ for terrae or maria, parti-
cularly if one chooses a fixed angle of incidence. For example in
Figure 2-1 is plotted the observed radiance factors for terrae at
the subsolar point. A Hapke photometric function which best fits
the data on terrae corresponds to a compaction parameter of 0.51

and is also plotted on the same figure. It is seen that at small
angles of incidence the Hapke function gives too little radiance
while at larger angles of incidence it gives considerably too much
radiance. These features made it difficult for us to obtain consis-

tently good fits to radiance data with a Hapke photometric function.

Consequently we re-examined the model on which the deriva-
tion of Hapke was based, This duscussion is given in detail in

Chapter III. By various modifications of the model, a number

of other photometric functions were derived. Numerical
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calculations were performed with two of these new photometric
functions during the course of this work. In the first of

these, the first part of Equation (5) is replaced by:

B(a,g) = 2.0- 2tam Lhsim, 2+2tanae—g/tana
g g(1+2cosn ) g
] 1
=2 —isim ]e-g(“zCosm)/tamc
T+2cosx

g(1+2009&)2

2 e-{g/Zsinx+g(1+1/cosx)/tamﬂ

1+cosy , a<m /2 (7)

B(d,,g) =1, >TT/2 .

The second of these, which we shall refer to as the "new"

retrodirective function, is given by:

B = B(i,e,ng) —2—[2.0_ Pﬂ“_e“gs/Ztam)(B_e—gS/Ztarﬁ)

28

+(§ _1)e—gs/2tan1(z_e—gs/Ztana)]’ 5 < /2
(8)
= -‘2—, x > /2
where s(i,e) is given by:
s(i E) = l(cosi+cos€)( ! + ! ) (9)
’ -2 cosi cost :
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We note that if s in Equation (8) is placed equal to 2, the
Hapke photometric function is obtained. In the latter form;
the "new" retrodirective function has a more complicated
dependence on both angle of incidence and angle of reflection
than does the retrodirective function of Hapke.

The radiance calculated using the new retrodirective

function, Equation (8) is also plotted in Figure 2-1, It is
seen that considerably better agreement with the data is

obtained, except for ¢ near 00°,

Energy Reflected from Lunar Terrae and Maria

We used a Hapke photometric function (Equation 5), the
function givenrby Equation (7), and the "new" function given
by Equation (8), in comparisons between calculations and
observation for lunar terrae and maria, For data we used
the tables of Orlova3 for terrae and maria along the lunar
equator, In Table I is given the results for rms error and

compaction parameter for these features.
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TABLE I

Comparison of Retrodirective Functions with Observation, along
Lunar Equator, for terrae,

Radiance Calculated]Compactiontr.m.s. deviation
Using Parameter, [between theory &

g observation, in Type of

kcal/cmzmin sterad} Formation

Equation 5
(Hapke function) 0.51 .0061 Terrae

Equation 7 t 0.61 .0054 Terrae

Equation 8
("new" retro-
directive :
function . 0.623 .0034 Terrae

The "new" retrodirective function gives by far the best fit.
Because of this success, and similar successes with maria and
other lunar formations, we used the new retrodirective function,
Equation (8), in all the following calculations.,

We found that for maria, the best fit for g was g = 0.43
with a rms error of .0027 cal/cmzmin sterad.

In Appendix I are reproduced tables of Orlava for lunar
terrae and maria, together with tables calculated for these
features using the above-mentioned compaction parameters.

We assumed that the maria have an average normal albedo of

0,081, and that the terrae have an average normal albedo of

0,124, 1In well over a third of the entries in the tables,
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the agreement between calculation and observation is @ .001
or better,
The resulting expressions for the energy reflected from
maria and terrae have been integrated over all angles to obtain

the total energy reflected into all angles per cmzper min as a

7

A
function of angle of incidence, The results are given in

Table A-5, in the Appendix to Chapter 2.
As the most abundant lunar formations are maria and terraétu
the average for the entire moon of the reflected energy lies
somewhere between the entries in the two columns in Table A-5,
Earlier it had been shownl\t that the average energy reflected

from the subsolar point is 0.106 + .010 cal/cmzmin.

Compaction Parameters for other lunar formations

In the comparison of calculated photometric brightness
with observations, one difficulty had previously been that
at large angles of incidence, the calculated brightness has
been too small. The major portion of this difficulty may be
eliminated as follows, The bulk of the experimental data comes
from Fedor‘etz,2 who used a brightness scale for his radiance
measurements which ranged from O to 5. In converting this
data to radiance factors, van Diggelen compared the data of
Fedoretz with observations made by himself5 to obtain a scale
of conversion from Fedorétz's brightness B, to radiance

factor p, The result was that van Diggelen used the conversion

o = .03334B + ,005 , (10)



2-9

(See reference 5, Figure 20). This means that if Fedoretz's
observed brightness is zero, van Diggelen's converted wvalue
would be .005; this is hardly reasonable. It appears that in
converting Fedoretz's data for his own use, van Diggelen thus
introduced a systematic error which is particularly significant
for conditions of low brightness. Such a systematic error might
possibly be due to fogging of the plates used by van Diggelen,
but this is speculation,

We have therefore found it necessary to convert Fedoretz's
measurements to radiance factors by means of a different con-
version, For want of better information, we have used a

strict proportionality:

p = ,03334 B (11)

and have compared the data so converted for several areas on
the lunar surface, with the new photometric function. We find
that the difficulty at large angles of incidence is almost
entirely eliminated.

In Table II, we give the best values for compaction para-
meter and normal albedo for certain selected features of the
lunar surface, and for comparison we also give where possible
the compaction parameters for the same features as determined
by Hapke.1 Root mean square errors are also given where

possible,



TABLE TT

Compaction Parameters and normal albedoes for Selected Features
on the lunar surface.

Normal Compaction r.m,s., error g given Fedoretz

Feature Albedo Parameter (Units of ra- by Number
g diance factor) Hapke

Maria .081 b3 .0042 - -
Terrae .124 .625 L0054 - -
Mountains
below mare
nectaris .090 .65 .0020 .6 123
Mare
Imbrium .057 U6 .0035 A 83
Bright ray
in mare
Serenitatus .071 .24 .0024 b 13
Near ray,
Mare .
Serenitatus .065 .18 .0031 .6 14
Clavius .130 .76 .0103 - 97
Clomedes .086 .59 . 004l - 10
Tycho .133 1.03 L0167 i 61
Pitatus " .069 .73 .0046 .6 96
Ptolmaeus .081 .82 .0073 .6 52
Ocean of
Storms .050 .87 . 0040 - 156
Ocean of
Storms .065 .50 .0038 - 161

Ocean of
Storms .053 A7 .0028 - 162
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The wide dispority between compaction parameters deter-
mined using a Hapke retrodirective function, and the "new"
retrodirective function, should be particularly noted. One
should view with considerable caution predictions made about
the actual porosity of the lunar surface on the basis of such
calculations, since the values of the compaction parameter
are so dependent on the model.

We have included in the table the available results for
three positions within the ocean of storms, as that is the
position of Surveyor I. We find an average compaction para-
meter for the ocean of storms of 0,62,

We note also that since our conversion, Equation (11)
is strictly linear, the normal albedoes obtained by us will
in general be somewhat lower than those tabulated by wvan
Diggelen.

It is not difficult to determine the compaction parameters
for a given lunar formation, provided photometric data as a
function of i,6 and & are available. Van Diggelen's and
Fedoretz' data are quite suitable for this. We have a com-
puter program which, given any number of data points (1ess
than 150), searches for the compaction parameter and normal
albedo which gives the least squares fit with the data, using
the new retrodirective function, Equation (8). This program
is reproduced in Appendix ILC. The program also computes

and prints a calculated value of the radiance factor for each



2-12
input value used in the least squares search., A sample of

the output is also included in Appendix II1C.

Average Normal Albedo

Saari and Shorthill6 give a statistical distribution
of normal albedo from which a reasonably reliable average
may be obtained. The resulting average is .095 which must
be corrected, however, as the Saari-Shorthill data are
adjusted to the brightness levels of Sytinskaya7 which are
too low. Orlova3 has given corrections to Sytinskavya's
values which on the average amount to an increase of 9.7%.
Since Sytinskaya's average normal albedo is O.O98(8>, the
corrected normal albedo averaged for the whole moon is

.095 . . _
558 X 1.097 = 0.106

-

This may be compared to the value 0,105 for the whole moon
given by Russell.8 Thus the measurements of the average
normal albedo seem to be in agreement. In Table A-6 we have
the energy from a lunar formation, integrated over all angles.
The tables are for an assumed normal albedo of unity, for
various compaction parameters and for various angles of
incidence, Energies are in units of calories per squar
centimeter per minute., Thus if the compaction parameter and
normal albedo of a particular formation are known, the inte-
grated energy of any angle of illumination may be found by

looking up the energy given in the table for that value



.
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of g and i, and then multiplying the entry by the normal
albedo. For example, for Tycho at an angle of illumination
of 60°, since the compaction parameter (from Table II) is
1.03, we find with interpolation an anergy entry of ,611,
Since the normal albedo is .133, the energy reflected into
all angles under these conditions from Tycho should be .133
X .611 or ,0812 cal/cmzmin.

When used in conjunction with tables of the energy con-
ducted into the surface, quite accurate estimates of the inte-
grated infrared radiant energy may be made from considerations
of energy balance. For example, suppose we take for the whole
moon an average normal albedo of .106, and an average compaction
parameter of 0.51. Then the energy reflected from the subsolar
point should be 0.0964 cal/cmzmin. The energy conducted into
the surface at this point is .0103 cal/cmzmin, and there are
no other important sources or sinks of energy. Therefore
using 1.99 cal/cmzmin as the input energy from the sun, this
leaves 1.88 cal/cmzmin which should be emitted in the form of
heat radiation., Such values obtained by energy balance are
probably in error by no more than 1.5%. We have adopted the
value 1.88 cal/cmzmin from the subsolar point in our discussion
of infrared energy in Chapter IV, in order to determine some
of the adjustable parameters.,

Finally we note that the new photometric function,
Equation (8), appears to approach zero a little too rapidly

at angles of incidence near 90°, This is because of the factor
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s(i,e), which introduces an extra cosi into the numerator
making the brightness approach zero as coszi for i near 90°,
From the overall point of view of the amount of energy
involved, this error is slight. However, it is an admitted
defect of the photometric function. A better photometric
function could be obtained--without any particular theoretical
~jJustification--by replacing cosi in s(i,e) by cosi+a; a is a
number of the order of 0.1. However we have not carried out
a detailed investigation of this.

Further slight improvements in the photometric function
may be made by modifying the scattering function z(q), in
Equation (6). However due to the scatter in the raw data,
and the crudeness in the model, it does not seem likely that
such efforts will lead to improved understanding of the

directional characteristics of lunar reflected radiation.
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Conclusions

We have presented numerous numerical calculations based
on a new photometric function, Equation (8), which depends on
a complicated way an angle of incidence, angle of observation,
and phase angle. The agreement with observations is much im-
proved with respect to earlier photometric functions. A
systematic error in the conversions of van Diggelen has been
pointed out, leading to improved agreement between theory and
observations at the larger angles of incidence. The resuiting
photometric function agrees satisfactorily with observations
except for ¢ very near 90;, where the calculated radiance
factors approach zero a little too rapidly.

One remaining problem is that a limited number of craters
show a maximum in brightness a few degrees (in phase) after
full moon, whereas all photometric functions discussed here
have their maxima at full moon, &4 = 0, We have no explanation
for this., We mention again, finally, the poor correlation

between values of the compaction parameter as determined using

different photometric functions, which are yet based fundamentally

on the same model of the surface. It is felt that, since the
new photometric function agrees so much better with observa-
tions, that the values of the compaction parameters determined
therefrom are more likely to be accurate than those determined

using a Hapke function.
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APPENDIX ITIA

Comparison of Calculated and Observed Radiance Factors for
Terrae and Maria using "new" Retrodirective Function.

Observed radiance factor p aleng equator for terrae (Or10va, 1956)

e* i 0 10° 200° 300 Lo 500 60° 700° 80¢°

80 .028 - .0h2 .05k .057 .066 - - -

70 036 .042 .048 .064 .067 ,077 .095 .124 -

60 043 051 .054 075 .077 .097 124,083 -

50 .051  ,061 .063 .087 .095 . 124 .086 .053 -

40 .061  .071 .076 .107 .123 .093 .058 .038 -

30 .072 .086 . 102 124 .,095 064 .045 .030 S -

| \ 20 .086 .102 .123 1,04 .070 L0571 .036 ,021 -
10 .102  ,129 .106 .085 .057 ,0L2 .029 ,021 -

- 0 L1124 106 .083 067 oLy 033 .024 017 -
10 .102 .083 .068 . 055 L0l .029 .020 .015 -

: 20 .086 .072 .058 .06 .035 .024 .07 .013 -
30 .072  .059 .050 .036 .028 .021 L0155  ,012 -

4o .061  .051 Loult .030 .024 ,017 014 L0101 -

50 .051 041 .035 .026 .021 L0116 .013  .010 -
60 .,043 034 .030 .022 .018 .016 .012  ,009 -
70 .036 .025 .023 .019 .017 .016 .012  ,009 -
80 .028 .017 .016 L0117 .015 .016 .012  ,009 -

*The values of ¢ from top to bottom, correspond to increasing
phase from just after first quarter to just before last quarter.




TABLE A-2

Observed radiance factor p along equator for maria (Orlova91956)

€ i 0 10° 200 309 upe 500 60° 700

80° .024  ,033 . 030 .029 .30 L0331 - -
70° ,026 ,033 . 034 N34 L0366 . 040 ,056 ,081

60° 027 .034 .038 s 04D L O4Y .055 L0871 0Ll

50° .030 ,037 ,0h1 .050 L 057 ,081 .053 ,028
Loo .034 04t . 050 . 065 L0817 .057 .035 ,019
300 .00 ,049 ., 061 .08 .058 Nelite! .026 ,015

20° ,049 ,062 .081 .061 LOhi L, 031 .,020 .012
10° . 066 ,081 L067 L O46 L0035 026 L016  ,010
0° .081 ,069 ,OuB .035 .028 ,021 .013  ,008

100 066 ,052 .039 .028 L0213 ,018 L0171 . 007

200 049 041 .033 025 ,021 .015 ,009 ,006
30° L04ko. .033 .029 ,D253 .,078 L0073 .009  ,006
oo 034  ,030 .025 ,022 .D18 L0171 .008 ,005

50° .030 ,028 023 . 020 2015 . 010 .008 .005
60° .027 .026 021 .018 .04 .010 . 007 .005
70° .026 ,024 .,021 L0117 .012 . 008 - -

80° .024 - - - - - - -




TABLE A-3
Calculated Radiance Factor p along Equater for Terrae (new
retrodirective functioen, g = .625, 2 = %24},
€ i 0° 10° 200 30° 4o¢° 50° 6G° 700 80°

80° .022 .026 .033 eli%e) ,051 066 ., 087 2115 124
70° .035 .04k .053 S D6L 076 .092 o117 124 .059
60° .0U47  .055 . 065 077 .90 . TO8 124 077 .030
500 .054 064 .075 . 088 . T06 .0y 084 . 049 ,018
Loo 062 .072 .085 . 104 . 2N . 089 »059 Ok 011

30° .070 .083 . 102 . 124 . 092 . 065 - OLl ., 025 . 008

N

20° ,080 ,100 o} 094 ,069 051 035 .019 .006

10° . ,099, .i24 , 096 L0713 056 L3 ., 028 ,015 ,005
0° 124,097 ,076 . 060 L QLT 035 L0273 .012 . 004
100 ,099 078 ,N64 .052 .00 .030 ,0%9 .010 .,003

20° .080 067 05!

It
°
-l
£
Ut

0735 025 .016 . 008 .002

30¢° .070 .059 UL

O
2

C
o
O

. 030 L0027 LOTh . 007 .002
oo 062 ,052 043 . 034 . 026 .,018 011 .005 . 002
50° 054  ,04x 037 ,029 L0271 L,015 .009 .00k , 001
60° 046 ,038 . 030 . 023 017 .012 . 007 .003 . 001
70° .036 .,029 2027 017 012 ., 008 ,005 .002 . 001

80° ,022  ,017 L0173 ,010 . 007 , 004 ,002 . 001 -




TABLE A-4

Calculated Radiance factor p along Equater for Maria (new

retrodirective function, = .372, s = .081).
e i 0° 10° 20° 30° oo 50° 60° 70°
80° 01l 017 .021 . 026 .032 040 - -
70° .,023 .028 034 .039 .OL6 . 054 .066 .081
60° .029  .035 040 OLTS .053 .06k . 081 045
50° 2,034  .039 .0Ls 2051 .062 . 081 .050 .029
Loo .038 .043 . 050 . 061 .081 .,052 .035 ,021
30° 0k2 ,049 . 060 . 081 054 ,038 .027 016
200 .0L7  .059 .080 .055 .04 <031 .021 .012
100° .058 .081 .056 043 <034 . 026 .018 .010
0° .081  .057 LOLl .036 ,029 .022 .015 .008
10° .058 .0L46 .038 .032 .025 .019 .012 .007
20° .0L7 .oko <034 .028 .022 .016 .010 .005
30° .0k2  ,036 .030 .025 .019 01k .009 .005
4oo .038 .032 .027 022 L0177 .072 .007 . 004
50° .034k  ,029 . 024 .019 01k .010 ,006 .003
60° .029 ,024 .020 .015 011 .007 . 004 .002
70° .023 .019 ,015 LO11 .008 .005 - -
80° .01Y - - - - - - -




TABLE 2-5
b
Average Integrated Energy (in .nl/cm” ss:c) Reflected from Terrae
and Maria as a Function of Angle .t In idence.

0° .2708 116
5° L0706 L1115
100 . 0699 CIEh
150 ,0688 112
20° LOET2 110
25° L0652 106
30° L0627 .702
35° .71598 . 097
Loo L5673 .092
Lgo 526 .085
50° L0484 ,078
55¢ .0L726 .070
60° 0383 ., 062
65° .0325 .052
70° 0262 L Ol2
750 .0163 2031
8o L0121 .019
85¢° L OCU8 .008

90° 0 0
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APPENDIX IIB

Here we give the computer program which reads in photo-
metric data, searches for the compaction parameter g for the
least squares fit of the new photometric function to the data,
then computes and prints calculated values of the radiance
factor for each data point. The program is written in Fortran II,
suitable for use on a CDC 3600 computer.

The data input consists of any number of data decks, in

sequence, each data deck being prefaced by a name card of up to

28 letters, such as:
TMARTIA*

with a 1 in the first column (for page eject) and an asterisk
before column 730. Following the name card in each data deck
is a card specifying the number of data points to be processed,
and the sines of the lunar coordinates X and B, respectively,
of the particular lunar feature being analyzed. The format is
specified in Format statement number 4. Then following are
the data cards on which for each data point are given the phase
angle, radiance, angle of incidence, and angle of observation
(See Format statement number 6), in that order. Angles are
read in degrees.

The output of a determination of compaction parameter
consists first of three columns labelled B, G, and RMS, which

comprise a printed record of the search for the best G, B is
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the albedo, G the compaction parameter, and RMS is the root
mean square deviation between calculated and observed radiances.
The last figures in the three columns are the most accurate
values, Following this are three more columns labelled PHASE,
BCAL, BOBS, which are the phase angle, calculated radiance, and
observed radiance, respectively, for the best values of albedo
and compaction parameter,

An end-of-file card follows the last data deck.

The program is written in six cycles of search, which
gives somewhat less than 1% accuracy. If more accuracy is
desired, the IF statement #101 may be modified by changing the
6 to whatever integral number of cycles is desired.

The new photometric function is contained in a Function
subprogram (Statement 40 plus 3) which may easily be modified

for use with other photometric functions.
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APPENDIX I1IC

CUMPUTER PROGRAM FOR COMPUTING
COMPACTION PARAMETER FOR LEAST SQUARES DATA FIT

PROGRAM LUN108A

COMPUTES PARAMETER FOR MINIMUM DEVIATION OF THEORETICAL PHOTOMET-
RIC FUNCTION FROM DATA, MAXIMUM NUMBER OF DATA POINTS IS 150
DIMENSION ALPH(150),8BCAL(150),B0BS(150),BCAL(150),AINC(150),
2A0BS (150), CINC(150),coBs(150),S(150),B1(150),B2(150),T(150),RMS(15

30) |
COMMON/BLOCK1/BOBS,BCAL,B1,B2,5.T,00,RT,B,G,M
FORMAT (* *)

FORMAT (13,2F6.3)

FORMAT (F7.1,F7.3,2F6.3)
FORMAT (* B G
FORMAT (3F10.5)

FORMAT (F7,1,2F7.4)

READ 1

IF (EOF,60)2,3

CALL EXIT

READ 4, M, SILAM, SIBET
DO 5 | = 1,M

READ 6, ALPH(1), BOBS(1), AINC(1), A0OBS(I)

RMS * )

F{C*AOBS(1))
F(C*AINC(1))

Z tga%sg;)*(ClNC(l)**2)/((COBS(I)+C!NC(|))**3)
| .

3, 14159-C*AL )*COSF (C*AL )+SINF(C*AL))/3. 14159

a Eggzign)+cnnc(|))*((1./coss(|))+(1./c1Nc(|)))

nn
OO
Tnn

]

~T |

O— 0O~

PRINT 14, B,G,RT
G = G+DELG
DO 38 | = 1,M
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38 BCAL(1) = ENERGYF(BI(I) BZ(I) S(1),7(1),G6)
CALL RTMS
RMS(J) =
J = J+1 ,
PRINT 14, B,G,RT
IF(RMS (J-1) RMS(J 2)) 100,101,101
101 IF(N-6) 104,102,102
104 DELG = —DELG/Z 718282
N = N+1
GO TO 100
102  CONTINUE
DO 39 | = 1,M
39 BBCAL(I) = B*BCAL(1)
Ly PRINT 48 »
L8  FORMAT(* PHASE BCAL BOBS*)
DO 4O | = 1,M
Lo PRINT 15, ALPH(1), BBCAL (1), BOBS(1I)
GO TO 105 : :
END
FUNCTION ENERGYF (B1,B2,S,T,G)
IF (T) 61,62,62
61 B3 = 1,0
GO TO 63
62 E = EXPF(-,5%G*S/T)
B3 = 2,0 - ,5*T*(1.-E)*(3.-E)/G + ( 5*S-1, )*E*(Z -E)
63 ENERGYF = B1%B2%*B3 -
RETURN
END '
SUBROUT I NE RTMS
DIMENSION BOBS(150),BCAL(150),B1(150),B2(150),S(150), T(150)
COMMON/BLOCK1/BOBS, BCAL B1,B2,S,T,DD, RT B,G,M

DF = 0.0
DO 11 | = 1,M
11 DF = DF + BOBS(1)*BCAL(1)
FF = 0.0
DO 12 | = 1 ,M
12 FF = FF+BCAL(1)**2
B = DF/FF
RT = DD - (B**2)*FF
RT_= SQRTF(RT/FLOATF(M))
RETURN . k

END




SAMPLE OUTPUT FROM SEARCH PROGRAM LUN108A

Pitatus¥*

B G RMS
0.07371 0.,50000 0.00467
0.07132 0.60000 0.00463
0.06942 0.70000 0.00461
0.06788 0.80000 0.00461
0.06841 0.76321 0.00461
0.06899 0.72642 0.00 461
0.06960 0.68964 0.00461
0.06937 0.70317 0.00461
0.06914 0.71670 000461
0.06892 0.73024 0.00461
0.06871 0.74377 0.00L461
0.06879 0.73879 0.00461
0.06887 0.73381 . 0.00461
0.06895 0.72883 0.00461
0.06903 0.72386 0.00461
0.06900 0.72569 . 0.00461
0.06897 0.72752 0.00461
0.06894 0.72935 0.00461
0.06891 0.73118 0.00461
0.06892 0.73051 0.00461
0.06893 0.72983 0.00461
0.06894 0.72916 0.00461

Phase BCAL BOBS
11,4 0.0558 0.0619
23.9 0.0424 0.049h
779 0.0074 0.0130
91.3 0.,0018 0.0116

-77.5 0.,0001 0.0007

-72.,0 0.0020 0.0017

-64,2 0.0053 0.0050

-61.7 0.0026 0.0100

-50.9 0.0139 0.0150

-50.3 0.0111 0.0153

-39.5 0.0227 0.0243

-28.3 0.0338 0.0330

-25,7 0.,0377 0.0333

-17.6 0.0454 0.0407

-11.3 0.0536 0.0450
-8.9 0.0562 0.,0546
-7.1 0.0625 0.0546

-1.5 00,0670 0.0710



Pitatus¥

Phase

4.

5.
13.
17.
23.
Lo,
50.
57.
62.
73.
79.
82.
96.

F=VUu NN O o =ut\

SAMPLE OUTPUT FROM SEARCH PROGRAM LUN108A

loleNoNoNoNoNoNoNoNeNoRe)
o
N
-\1

0
0]
0
0
(0]
0

[eNoNoNoNoNeoNe

BOBS

.0597
.0637
. 0630
.0520
L0410
.0297
.0216
.0150
L0116
.0100
.0096
.0050
, 0007
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CHAPTER ITI

DERIVATION OF PHOTOMETRIC FUNCTIONS

Introduction

In this chapter our purpose 1is to derive a law describing
the light reflected from an element of.the lunar surface, We
shall assume the reader is familiar with the basic ideas of
reflection, scattering, and brightuess.

A reasonably good mathematical expression for the photo-
metric properties of the 1unar surface has been obtained by

Hapke - 3

The model on which his derivation is based consists
of a semi-infinite, porous layer of randomly p}aced obscuring
objects suspended in depth in such a way that‘fhe interstices
separating them are interconnected.

We shall not repeat the derivation at this point since it
is discussed and extended later in this report, The resulting
expression for the reflected energy, I(re)(i,E,a) per unit solid
angle per unit time from a unit area of actual lunar surface,
when the solar insolation is incident at angle i from the mean
sufface normal and the reflected radiation is observed at angle

€ from the mean surface normal, with @ the angle between incident

and observation directions, is as follows:

. € i T
1(7) (1,6 ,0) =5 2228208 Ly 0 (4)p(a,g) (1)

where Sé is the solar constant, and b is the total reflectivity

of an object, i.e., the fraction of incident light reflected by



&

3-2
the object into all directions., The functionvy(a) is the
—
scattering law of an individual object.

In his work, Hapke

uses the backscattering expression

Eka) =[((m-a)cos a4 +sin a] /m (2)

which satisfies the normalization condition

).(0) =1 (3)

and corresponds to an opague spherical particle diffusely re-

flecting from the illuminated portion of its surface.
The function B(a,g) expresses the effect of shadowing on

the porous surface. Hapke gives the following expression for

this so-~called "retrodirective function":

Ba,g) = [ 2-tan a(1-e"8/ 20 %y jpu7 (5 =8/ tan dy o o 4 /p

1 a >u/2

(4)

where g is a parameter related to the degree of porosity of the
lunar surface material, or to the fraction of wvoid space at the

surface, The parameter g may vary from place to place on the

surface; Hapke obtains most of his good fits with experimental

data by choosing

g =0.6 . (5)
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However, g may vary from O.4 to 0.8. The best average value
for g using Equation (4) the whole moon seems to be g = 0.7.

The parameter b may also vary from place to place; it is
determined from the albedo at the particular location of interest.

These expressions, with proper choice of multiplication
factor b, represent reasonably well the observed photometric
properties of the moon. At large angles of incidence and at
large phase angles, the observed reflected light is greater
than that predicted by Equation (1).

We now ask, how can we improve the expression (1)? We
note that basically the model gives rise to a result which is

the product of three factors; there are first the Lommel-Seeliger

law,

1
1 + cos € /fcos 1

which insures that I(Fe) = 0 when i = 90°, secondly, the scatter-

ing 1aw Z(a) and thirdly the shadowing function B(%,g). We shall
now consider possible modifications of Hapke's argument which
will still allow I(re) to be written as a product of the

same three factors. We are mainly interested in modifications

of the retrodirective function B(a,g).
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The Retrodirective Function

If one looks at the detailed physical model implied in
Hapke's treatment,3 one sees that the rectangular tubes repre-
senting the incident light are truncated at right angles to the
beam., These tubes are then oriented so that one edge is per-
pendicular to the plane formed by the incident ray and the
direction of observation., This simplification is made in order
that the area seen at the base of the cylinder is a simple
rectangle and not a triangle or a four-sided figure as it
would be if the incident square cylinder of light were trun-
cated by the mean lunar surface, Actually, the incident
cylinder of light is not truncated by the mean lunar surface,
but rather by the surface of the facet upon which it is incident.
In Hapke's treatment he introduces the mean lunar surface as a
reference plane when actually one should treat the face of the
facet itself as a reference plane, +t would be a good approx-
imation to use the mean lunar surface as a reference plane if
the penetration of the light into the material were large
compared with the dimensions of the reflecting particles or
elements in the medium, This is not the case, however, since
Hapke found that the penetration depth is approxmately equal to
the diameter of the reflecting particles in the mediu. He ob-=
tained best fit with experiment when the ratio g = (a/T) = 1,

a 1is the diameter of the particles and T the attenuation dis-
tance, that is, the distance over which radiation decreases to

1/e of its initial value. A literal interpretation of Hapke's
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model would be one in which all facets were normal to the
direction of the incident beam. If this were the case, then
the distance over which the light is attenuated on its way out
should be measured to that surface. Such a surface would be
simply an extension of the surface end of the square cylinder.
Hapke extends the path of the reflected rays to the mean lunar
surface,

A literal interpretation of the model, however, may not
ignore the details of the geometry of the light cylinders at
the surface and the change in path length in the absorbing medium
associated with those details, We expect the substratum for
which such particles form a surface layer to be much larger than
the particles themselves. Therefore, it is not proper to write
zcos 1 = z'cos € = y as does Hapke (Figure 2)., This does not
conform to Hapke's notation; in Figure 2, z is the path length
of the light as it enters the medium measured to the point at
which a reflection (scattering) occurs and z' is the distance
from the reflecting particle to the lunar surface. Measuring
these lengths to the lunar surface enables Hapke to introduce
the angle of incidence, i, of the incoming light. i is the angle
which the incoming light makes with a normal to the lunar surface
(mean lunar surface). € is the angle of observation measured
from the normal to the lunar surface, The above relation is the

key equation leading to the Lommel-Seeliger law.
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‘If:the;dimensions of surface facets are large compareéd with

T, then i and ¢ should be repiaéed'by'i' and € ', where the latter

are measured wiﬁh respecf to a nprmal,fo the facet itself fathgr

',than-the nbrmél to“the lunar»Surfécec

Qné may.completely generalize.fhe prbblem (with the re-
striction thaf the réflécting’elemeﬁté in the medium-éfe regarded .,
as small squares) by letting the“facet upon which the light is
incident truncate the incident chindef.in’; cqmpletely‘érbitrary

manner. One of the difficulties that enter into the details of

~this model is the problem of deriving a simple expression‘fdr'the

area of the bottom of.the cylinder as .seen Ey an observer. The
‘details‘bf this calculation:are now-laréély completed but the
exptessions are algebraically toovcomplicated to permit calcula-
fions to be made for in§IUSion in this report. In the céléglations

referred to, the incident square cylinder of light is trurcated in

_an‘érbitrary direction by the surface of the facet. The visible

area, the non-visible area, the incident path length, aﬂd

exiting.path 1ength'ére expressed in terms of angles iffand €
which define»the direcfion ofvincidence and the difection of
Viewing with respect t9 a normal to.the face£, After a general
expression‘fof tﬁe intensity of fhe-emeféent beam is obtained
for a particular facet} éne mst introduée a reference 1line
normalvto the mean lunar surface and average final results over
all orientations of the facefsn Since the direction of the in-

cident beam and the reflected beam are Specified in an absolute
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sense, the angle between the incident beam hi and the direction
of the reflected beam %o will be the same as the angle between

~ A
n! and nt?
i o}

where the primes merely designate that the directions
of these rays are defined with respect to a normal to the facet,
When unprimed, it is understood that their orientation is defined
with respect to the mean lunar surface. The algebra required

to relate results for an arbitrary facet and involving angles

i' and € ' to a final expression involving i and ¢ plus an
additional angle and then averaging over all values of this

angle is not yet completed but the procedure is clear, Addition-
al time will be required to complete the details and perform
calculations, We, therefore, return to the simpler picture of
Hapke and treat his model more realistically, The purpose of
pursuing such details is to attempt to establish a range of
flexibility in the final results, One will then know how much

he can tamper with the theoretical curves in order to obtain
best agreement with experiment.

For simplicity in calculating the visible area at the bottom
of the light cylinder, we shall now follow Hapke in orienting the
cylinder so that one edge is perpendicular to the plane formed by
the incident ray and the reflected ray., We shall first regard
the surface facet as being always normal to the incident beam,

In general, the facets will be oriented in all possible direc-
tions. We can introduce only one degree of freedom in the orien-

tation of the facets which is consistent with keeping an edge of
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the cylinder perpendicular to the plane of n.

and n_ and that is
i 0

to allow the surface to rotate about the line at the top of the
cylinder and perpendicular to the plane of ho and hio This angle
is designated by 8 in Figure 6. The distance the light travels
before hitting the reflecting elements at the bottom of the
cylinder is z as shown in Figure 6. We now differ from Hapke
in that the reflected light will attenuate as it travels from the
bottom of the cylinder to the extension of the plane of the
facet as shown in the figure. It is obvious that the geometry
of this treatment will invelve neither i nor € , but will be de-
pendent only uponla. As another refinement, not that the re-
flected light does not start to attentuate, that is, it does not
encounter absorbing medium until it crosses the wall of the
cylinder. For simplicity the exiting path of the seen area is
measured from the edge of the area, but this detail is not im-
portant here since no attenuation factor along the path 1is
introdgced in this case. We will consider the following cases:

1: Truncate the incident cvyvlinder perpendicular to the
incident beam.

(a) Measure the path of the light scattered from

the unseen area from the edge of the area to the surface of
the facet, Introduce the exponential attenuation factor independ-

ently of whether the line is inside or cutside the cylinder,
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(b) Modify the above procedure by measuring the
attenuation path from the midpoint of the unseen area and also
take into account that attentuation does not begin until the -
rays intersect the side of the cylinder.

2. Allow the surface facet to make an angle 8 with the
plane perpendicular to the normal 5f the incident beam., Intro-~
duce the exponential attenuation factor independently of whether
the line is inside aor outside of the cylinder,

Measure the path of the light reflected from the.unseen
area ta the middle of the area and introduce attenuation only
after it leaves the side of the cylinder. Measure incoming
attenuation path to midpoint of seen area, Average over all 8.

The above procedures will then yield different forms for
the function B(an). Hapke calls this function the retrodirective
function. As we shall see, our procedure will modify Hapke's
results to the extent of obtaining different retrodirective
functions, Differences among tithese cases may be minor; never-
theless, formulas for each have been derived. We shall see that
a modification of 1(a) gives HMapke's retrecdirecitive function.

The angles i and € enter Hapke's expression through the
Lommel-Seeliger law which appears as a separate factor multiplyiné
the function B(a). 1In order to make formulas satisfy the
reciprocity condition, Hapke makes the substitution

sec 12 (sec i + sec e )/2.
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Since i and € do not enter our description when deriving
the retrodirective function, we now ask how they should be
introduced, It is reasonable to introduce them as follows:
first let us suppose that the average slope of the facets
coincides with the mean lunar surface, It then appears
reasonable to say that, on the average, a large € will
introduce a longer attentuation path in the absorbing medium
than would a small ¢. We will therefore now regard the
1unar surface as flat. We assume that on the average one
can write z cosi = z'cos ¢ =y, where 2z, z' and y are
defined in Figure 2. One then derives the Lommel-Seeliger
law in the usual manner, and uses it to modulate the function
B(a). Note that this plausibility argument satisfies the
reciprocity theorem. It may also be mentioned here that the
general results wherein the incident cylinder is truncated in
an arbitrary manner by a facet and then averaged over all
orientations of facets do not satisfy the reciprocity theorem.
In that case then, one must arbitrarily introduce reciprocity
through the substitiution sec i = (sec i + sec e)/2 as does
Hapke. It is therefore not clear that the resuits obtained
from arbitrary truncation will be any more significant than
the results obtained in the present model, since the more
general results have to be doctored up to satisfy reciprocity,

Before proceeding to a detailed calculation of B(a) in
our model, we first derive the Lommel-Seeliger law, and also

review the derivation of Hapke's formulas.
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Derivation of Exponential Absorption Factor

In the following discussion we regard a plane wave of
light as incident upon a material made up of randomly distri-
buted scattering elements. Suspended particles of dust would
satisfy this model if the particles were kept séparated from
each other by electrostatic forces. When light encounters
a particle, it will be scattered in the angle range dx as
specified by a scattering function b(r ). Above the particle
there is effectively an empty tube reaching to the surface
out of which some light can escape with zero probability of a
collision with another particle,

If the reflected light crosses the side of this imaginary
tube before reaching the surface;, then there will be a finite
probability of encountering another particle in the medium
before the light escapes, from the medium.

If B0 is the area of the plane wave of light at the surface
of the medium, and S0 the energy flux per unit area of the beam
incident at angle i with respect to the normal of the surface,

~Hoao02 _ SOBoe”z/% is the energy entering lunar

then S B e
o o
surface of area B,/cosi which has not yet been scattered after
beam travels a distance z along the path beneath the surface.
This may be seen as follows. Let B be the cross section of

incident beam at any depth z. Let a_ = a2 be the area of

o
intercepting elements and n, the number of such elements per
unit volume., Tubes of light are shown schematically in

Figure 3. The decrease in the area of the beam (that is, the

portion scattered) in traveling distance dz is:



dB

-nga,Bdz

-n,a,z
€

Therefore, area of beam at surface is By so that:

-na, 2z
B=Boe°0.

Thus energy scattered out of beam in distance dz (layer

dy) (Figure 2) is

Noaoy
BN = CcCOS1l d
oo = =Y
BgoSpongage dz = BySgngage ey
since dz = dy/cosi. This energy is incident over an area of

lunar surface Bo/cosi. So energy incident over unit surface

. . . —Nnga cosi
area and scattered out in distance z is S nja,e ° oy/ dy

The energy scattered per unit volume (since volume of scatter-

- / i
ing region is Bo dy) is Sgngage 1020Y/COS1  Tnerefore

cosi

Sonoaoe-noaOY/COSi is the energy produced per unit volume of
scattering material per unit solid angle, If there is some pure
absorption then only a fraction (say fo) of this energy will be
scattered.

If we neglect that part of the path length which is in the

empty tube and consider the light which hits a scattering center

as again traveling through the same medium and therefore having



a probability of being scattered again before reaching the

surface, we can write:

dB = -n_a Bdz'
o o0
B = B! e-noaoz
since B = B'!' when z' = 0. Thus the fraction of light scattered
at z!' = 0 which gets out after traveling distance z' is
— ' -
o~No2oz' _ negagy/cos €

In the above discussion we have omitted the scattering
function b(a) since it depends only on a and not z or z'., We
will now let nga, = 1/T where T is the mean attenuation length
of a beam of light rays in the medium. If the particles are
far apart (average distance apart large compared with diameter
of particles) then T = 1/n,a, exactly. If the objects are
close together, shielding of one object by another will be
common so that each object is less efficient at blocking

light and hence T > 1/n_a.

Lommel-~Seeliger Scattering Law

The energy leaving a volume of thickness dy and unit area
S

is £ —g exp Eﬁ%;dy. Multiplying this by the fraction e-Y/fcose

which reaches the surface, we obtain for the energy leaving per

unit solid angle per second from a unit area of surface:



£ s e—y/#cosi
0”0

e—y/’l‘ cose 4o

cos€ cosi

Energy out per
unit area of

cosi cost
surface = f r————-————

0”0 _cosi+cosc] ° (6)
This is the Lommel-Seeliger law,

In terms of the brightness this energy is expressed as

B(i,e Jcos€ . Thus:

. cosi
B(l’e) = foSo cosi+cost (7)

The brightness is the energy through a unit area perpendicular
to the direction of observation.

The size of a unit area of lunar surface projected perpendi-
cular to direction of observation is cos€ . Therefore, we divide
(6) by cos¢ to obtain flux per unit area. Equation (7) must be
multiplied by the projected lunar area seen by the detector and
also multiplied by the solid angle subtended by the detector as

seen from the lunar surface.

Derivation of Hapke's Results

The general features of Hapke's model have already been
described. Hapke points out that an observer looking along line
O'P (see Figure 4) will only see part of the area of the bottom

of the cylinder. Referring to Figure 4 the viewed area is given by

A = a(a-x) where x = ztamt. As mentioned earlier, Hapke now

writes
zcosi = z'cos = y (8)



L
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so that the exiting ray is measured to the lunar surface, If one goes

along with this, we can now write

2

A a(a-ztang ) = a®-az'cose tang /cosi

A

1

az-ay sec 1tan q

From this the seen fraction F = A/a? of the total area A is :

F = A/aZ = l-y(sec i tan a)/a= 1 --ia{- (9)

The fraction of the area which cannot be seen directly is:

1 -F =

ST

where

i;—= y (sec i tan q)/a

The expression for F is not symmetrical in i and ¢. In order to make
it symmetrical ini and ¢ Hapke then makes the substitution
sec i (sec i +sec ¢) /2.

Thus

o[

= y( sec itang )/a = y(sec i +sec ¢ )(tang)/2a

with this substitution our Equation (9) for F becomes
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3 = F - l-y (seci+sece)(tany )/2a
z' cose
=1 « — (=—= 1
52 (COSI +1) tan ¢ (10)

This expression for F is the same as Hapke's except that in
his notation, his x is our x/a and his y is our a/2. For a given
a, & becomes zero for z> z, where z tang = ajz = a cotq, .

Multiplying the seen area by the exponential attenuation factor

- - ]
e 2/ and the unseen area by e (z4a') /7 , one obtains
z ®
IO -z/1 TO -(z4z')/7 j -(z42')/r dz!
Ae dz' + J (a%-A)e dz'+al e
Z =acotg
o o o
(11)
Hapke makes use of the relation:
z cos i=2zlcos g =y
so that
-z/1 -z'cose /cosi  -yseci/r
e = e = e
and
Ctat)/r_ -at1e S2EE L Ly /s
e = e cosi " =¢€ coseg + cosi
Equation (11) can be written in terms of xz' as:
Zo ® cose
_ ' . - 1 1 d 1
jAe zicose SeClypr 4 I(aZ—A)e 2t cosi)/T z
0
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Where the first integral is now 0 to o rather than 0 to z

but we specify A = 0 for z > z_. Putting sec i = (seci +sec e)/2

in the first exponential: (but not the second)

z
S Cose Weoer— T 1)/ 27 dz' +:§°(az-A)e-Z'(1 ggssle )/T (12)
S o]

This is now reversible when we use (10) for area A, that is,

the exact A with the substitution seci—(seci +sec ¢)/2.

The exponential in the second integrand when written

in the form y{( ) is symmetrical in ¢ and i. The

+ "
COse cos i

. . . -yseci . .
exponential of the first integrand, e yseci/r , is made symmetrical

in i and ¢ :by.the substitution seci = (seci +sece )/ 2.
Expressing the integrals in 4-26 in terms of y one has

letting a®B be the sum of the integrals:

y 1
a’B=a? So[ 1- ( - ) tang } e_Y( cose cos 1)/ T4y

5 cosi coseg cos ¢
y 1 _ 11

+a"‘So ) tanq e v cosg cosi Za dy
S cos i cose cose
o 11 |

+a2 S e -Y(Cosi 'COS e)/T dy

(13)

y cos e

(e}
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2

Equation (.13) divided by yields the light exiting per unit

05€
area of scatteringcross section parallel to the lunar surface,
Dividing simply by az yvields the light exiting per unit area
perpendicular to the direction of exit. The latter measure 1is
directly related to the brightness which is the quantity seen

by a detector scanning the lunar surface, We will therefore
divide by az. In discussing reversibility, however, one must
divide by az/coa', since energy is reversible, not the brightness,
" This Qill eliminate the i/cos¢ factor in Equation (13). Except
for this factor, the integrand in Equation (13) is reversible,
that ié, unchanged with respect to an interchange of i and ¢.

The area factors in both integrals have already been

symmetrized in i and ¢ by the substitution sec tﬁ(sec i+sece ) /2.

Note that y = z7cose . Therefore Yo = zocosE'D Now Yo =

a cottcos¢e . Thus although the integrand is invariant under an
exchange of 1 and ¢, the limit in Yo is not invariant., We there-~
-fore replace cos¢ in thé limit by ggggégggi’ s0 y, = facota ,

0sS€ +cosi
Wherae L _ E——g—_—_—

=1 °

2

We now carry out the integration with the integrand expressed

in terms of y:

Let 1/cose + 1/cosi = b. The net expression is the form




e

vy Y
o A ) »
a%f'(1-§§'tana)e-bY/ZTdy+a%f'-%ﬁtan& e—bY/Tdy+a%16 bY/Tdy
o] Ot ‘YO
(14)
Now
Yo by or, Yo
f’e 2T dy = Tf(T-e 21 ).
o
Yo ' by b
2t Yo 2 Yo
b b b Yo —— U7 -
- =Y =L — - e~ 27
Zatam.iye > dy ‘Zatam[- =—e" 2T + (1-e )]
. b b b
Yo T Yo 2 Yo o Yo
btam ﬁ¥ _ b —  1° - g~ A _ T
—EE——{ = sotam[ -——e o+ b2(1—e )Jﬁae dy = Te
' 0
%4 b b
.2y 7 ~2o
tlje Tdy=—€¢ ¢

Yo
Collecting terms:

o 37T tam . 2Ttam. -by /27 by _Ttam _-by,/T}
Bcose = 3{2- ™ +[ -2+bl + - e o/ = 4 1~ 5 Ta Te |

(15)

Now b = 1/cose+ 1/cosi and { = cose +cosi/2 so bl= = 145282y (223

2 cose cosi

Using the implication of Hapke's symmetrizing substitution that

cosi > cos¢, bl = 2 and bcose = 2, cne obtains




a : 2a .
L= 12'{ 2—%am+2§-tam' e TTaMl . Ztamy e EaEE} o (1‘6)

v [-1

b

We now compare this with Hapke's fermula 4~31 reference 3,

Hapke writes

Ba,g) = 2 ~ i%;—g— (1-e“V/tam)(3ue=-ytam)

(17)

.
g = ﬁx = %. Hapke's y is our a/2, In our notation,

v is the vertical distance of a scattering point below the

mean lunar surface.
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Multiplying out Hapke's expression (17) and substituting

g = a/T we obtain

AT tang 27 ~a/Ttam Ttam 2a
2a ‘g rame 2a  Ttam

B(a,g) = 2-

(18)
Expression (18) of Hapke agrees with our derivation of his
result, Equation (16).

We now modify Equation (15) in a plausible way in order to
obtain a formula which gives quite good agreement with experimental
data. We first note that (15) was obtained by introducing the
symmetrizing substitutions 1/cosi = 3(1/cosi+1/cos € ). This
implies that the formula should be valid when cos i = cos €.

This is only true for small values of i and ¢. 1 and ¢ can differ
from each other by large percentages but the cosines of each well
only differ slightly if the angles are small. The quantities

bl and by _(=bl a cot n) in Equation (15) are slowly varying
functions of i and ¢. i and ¢ can differ from each other many
fold while bl will remain essentially constant. For example

when i = 0 and € = o, bl = 2, When i = o and € = 45° bl = 2.05,
'The one factor in Equation (15) which is not consistent with the
symmetrizing substitution is the factor 1/b. 1/b is the Lommel-
Seeliger factor and in that sense should be present. The Lommel-
Seeliger factor, however, is much more sensitive to large
differences between i and ¢, In the spirit of the derivation
howevér, the formula should only be valid for i = ¢, It may be

used for a wide range of values of i and ¢ for which this
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condition is not true if the function is relatively insensitive
to values of i and e . On the basis of this requirement we will
replace 1/b cos € by 1/bl when writing an expression for B.

Since bl as well as b cosis equals 2 when 1 = ¢ this gives

Hapke's formula (16) for B. Thus we now end up with an ex-
pression for B, which happens to be symmetrical in i and ¢

although this is not required.

Referring to the starting Equation (11) we note that the
first integral, which is a large term, zhows no attenuation of
the light as it leaves the cylinder after being scattered by
the seen area of the base., Putting Hapke's symmetrizing condi-
tion in the exponential is equivalent to introducing attentuation.
on the way out of the cylinder (except that the attentuaﬁion fac-
tor is only half of what it would be if true attentuation were
taking place). The two remaining integrals contain attenuation
terms for light entering the medium as well as for light leaving
the medium. One might say that the final 1/b factor (Lomme1-
Seeliger law) enters legitimately from this part of the total
Equation (11) (Area A is still symmetrized artifically in all of
the integrals). Since 1/b is introduced artifically in the first
large integral one may argue that it is permissible to take it
out from the end result by replacing it by 1/bl.

At any rate we now adopt the formula

B='—';')"i'{}
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where { ] represents the terms in brackets in (15). We now
introduce the Lommel-Seeliger law by writing for our final

formula

1 cosZi 00526
Bcos € = —E_ { } = 3{ }o
b1 (cosi+cose )

(19)

This is the "new photometric function" used in Chapter II.

Modification of Hapke's Model

We now modify Hapke's model by explicitly truncating the
square incident light cylinders at right angles to the incident
light. The surface of the cylinder is not the lunar surface.,
Therefore, the angles i and € do not enter the geometry and the
relationship z cos i = z'cos€ which basically leads to the
Lommel-Seeliger law is no longer applicable. This modification
corresponds to case 1(a).

Referring to Figure 4, the total integral is

Zo Zo -

I a(a—x)e—z/%dz+ ) axe (z+z')/sz,

) )
22 ~(z+z' ) /T

+ O + fa e dz' (20)
z
)

The first integral is theseen area times the incoming attenuation
factor; the second integral is the unseen area times incoming
attenuation factor times outgoing attenuation factor._. Both in-

tegrals are integrated betwen z = 0 and z = z Zz is the

0° o}

maximum value for z for which the bottom area can be seen,
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Zo = a/tan a. Both z and z' are measured to the common edge

of the seen and unseen area. We will express the integrands

in terms of z using the fact that z' = z/cos 2. The integrand

in the first integral is zero afier z = zg since after that x =

x 1n the second integral is replaced by a and the integral ex-

tended from z = z, to ® as shown in the third integral. 1In

terms of z, (20) becomes

a/tam o/ a/tam _/
ﬂ (a~aztam )e Z/sz/coax+atan1f ze \Z+Z/COSI)/TdZ/COSi
o a)
T (z+2/cosy )/
+ a? f e \ZFTZ/COos sz/cos} (21)
a/tam

z and z' are measured frem the common edge of the seen and the

unseen areas.

Carrying out the integrations yields +the final result:

~

1
cosx

2
ces % a

{aZT—aTZtanl

T 2 2 —a/Ttanx 2
-~a T+aT tam le -a Ttvtann
tam ) a T ang,

+
(1+cosx)2

ot 2 2 {141 /o
aT tanmcos“ae—a/T(1+1,Lusl)tanl} . (22)
~
(1+cos a)
The flux of emergent light in terms of the flux of incident

light S, is then
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i S pb(a) i
c(re) _ Zo S92 Ttam s L simoost (T, ., )e-a/Ttam
cos 4« a a (1+cogx)2 a
T (sinxcosx)e—a(1+cosx)/Wsina}agT . (23)

a (1+coSl)2

The appearance of cosd 1is the denominator causes the curve
for B(2,g) to rise sharply as a2 —> 90°.

It is interesting to note that if the factor 1/cosy is

removed and if we also replace the integrands en(z+z/cos1)/T

e—ZZ/f

by , that is, discard the cost in the integrand also,

then the function

a/tam a/tam )
Bla) = f (az—aztanxﬁfz/rdz+atanaj Ze_zz/r(ﬂz+a2 eﬁzz/sz
© o a/tam

integrates to:

2
- T -
B(a) = 351{2—%%tanx+%5tanae a/rtanm_ Egtanxe 2a/ftana}.

(24)

The expression in brackets in (24) is Hapke's retrodirective
function By ).

Neglecting the 1/cosa factor in the preceding derivation
is equivalent to attenuaticn of the light on the way out of the
medium (after being scattered) by the same amount as it was

attenuated in reaching the scattering center. If the exponentials
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are regarded as a measure of probability, then the probability
of penetration to a distance z is taken as the same as a pro-
bability of escaping after being scattered at z., There is no
physical basis for this assumption but it is interesting that by
making it, we arrive at Hapke's retrodirective function. In
the previous derivation of Equation (23), the 1/cost term
should certainly not be included in the first integral; that is,
the integral involving the light from the seen area which es-
capes back through the incident light tube without attenuation,
With this change, one obtains the following results for
integrations:

The integrals are

Zo _ Z 5 - a/tarﬁ. _
J aze Z/szﬁf aztanae z/sz+‘Jq ze (Z+Z/0051)/&dz/cosx
o 0 o)

X

+a2 e—(z+z/cosx)dz/cosl
a/tam
2 2 a’l’ztarnZCoscc 2 —-a/Ttam,

= 4+a T-aT tam +

+aT tamxe
(1+2cos)

2 (1+20051)
2aT "tam,cos) e_ 2T sim

- °

(1+2cosx)2

We now derive another retrodirective function paying closer
attention to the physical details which should be taken into
consideration in this model. Specifically, we will take into

account the fact that the light scattered from the unseen area
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will not attenuate until it escapes from the cylinder. The
outgoing attenuation distance must now be measured from the
center of the unseen area. This corresponds to case 1(b).
This means that before z reaches z,, z = 2z'cosd. When z >z,

the attenuation path is AP as shown in Figure 5. The integrals

then become:

a/tam a/tam
J (az—aztadx)e—z/%dz+atan1f _(Z+Z/ZCOSI)/&dz/Zcosm
o
2 7 (z+AP) /
+ a e\ 2% Td(ap) (25)
a/tam
where upon using the following relations:
X
t 2tam
L' = 2z - 4
a
_ [ — —————
APcosay = { z S tam.
AP = Lt z-4 z_ _ a _ zZ_ 1
T cosy  cosdl = cosl 2tamcosy =~ cosy 2simy
dz
a(aP) = cosa
we obtain the following result for the integrals
_ a21;2 21 tard T hsin a ( tana)e TEam, (- T _hsim )
= { 2-
2 a a(1+cosx) (1+20091) a(1+200$f

xe(1+1/2cosu,)a/’rtanx 2 -a/2TsinJe—(1+Vcosx)/Ttanx}

(26)
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Results of the calculations with this expressicn are discussed
in Chapter II,

We now generalize toc the extent of allocwing the surfacs
ffacet upon which the incoming light is incident to make an
angle B8 with respect to the normal to the incident light
cylinder, However, the incident light at*tenvation path is meaz-
ured to center of seen area and attenuation path of light again
to and from the unseen area is measured to the center of the
unseen area, Again one must avsrage the final result over all

values of 8, This corresponds to case 2

<o
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Referring to Figure &6 we take CO' as the distance over which
the ingoing light hitting the unseen area of the bottom of %the
cylinder is attenuated. DE is the attenuation distance for the
light incident upon the seen area of the bottom of the cylinder,
Both distances are parallel to the incident rays and are measured
to the midpoint of the wunseen and the seen portions respectively
of the bottom of the cylinder. Only that portion of the exiting
path outside of the ¢ylinder should enter the exponential attenua-

tion factor, The integrals to be evaluated are:

zZ Zz o
0 o , i 2 ~(z+A'P") /T .
[ a(a-x)e DE/#dz+I axe (o G+AP)/ft£a e a(arpw)
z ., - o}
o o .
d(A P) (27) -
The 1limit zé is introduced since for positive B8 when @ reaches
its maximum value of 90°, z, is the minimum distance from z = 0O

at which the area of the scattering center can be seen,
We now write the necessary vrelationships for case 2, AP is

the outgeing attenuation path;
CO' = zm(égé)tanﬁ

CO' . _ O'pP .
5in{90+B -2 ) ~ sin(90-B)

0'p = —208 8 [(z-iégﬁltansj

cosla ~B
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AP = 0'P -~ 0'A

X . _ X
0'A = 37— 5 O'Asim = 3
AP zcos B _ acosBtan8 X cosBtanB X
cos(a -8 2cos (o =8) 2 cos(a-8) T 2sim
AP zcosB _ _@a sin 8 L X ( sing _ 1 )
cos(a-8) 2cos(a-8) ~ 2 ‘cos(a-8) sim

We now need an expression for x in terms of =z,

X = BP'tam.

BP' = z - 2 tan8
2
a .
x = ztam - ;—tamtans
Thus X =c¢c z + d
where ¢ = tamiand d = - iﬁ;m———ﬁlg
AP - —2cOos _a sing " ztara( sinB _ 1 )
~ cos{x-~8 2 cos(a-8)  ‘cos(a-8) sim
a gingd 1
-k tamtane(oos(a-—B) - sira)
z( cosB . tamtanBcos3  _tam )
cos(n-8) 2cos(a-B) 2sim
a cosB tang- & tamtanZBcosB , & tamtang
2 cosfa-g) "= 7 cos{a-8) n sim
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or AP = Az+B, where

cos ' tam tang 1
A = cos(a -8 (14 2 ) - 2coa
and
_ a cos8tang tamtanB, a tanB
B =-3 cos(a -B (1+ 2 ‘7T 2 cosmx ¢
In the second integral dz®' = d(AP) = Adz. In the first integral
we shall take dz' = dz. When x = a, z = Z s the maximum z for

which the bottom can be seen at a given a,

We now obtain an expression for A'P" in terms of z. For

example cP'E:

z 4 2tan
o 2 _a/cosB
sin(90+8-a) ~ sim
_ acos{a-8) a2 .
2o T SimicosB 2 tanj
After z = z the following relations hold:
Bt = & LAY = 2
A'B* = 200@& A Ssim
a a
Atpu Z—Euan8~§coﬁ1

AYPU LAY T z




AP
ATP{L'A" z

N
§
o~

where
L = %(tanB+coﬁm)
Arpn o Z LIAT-2LAS
2
tpn - a - a _ 2 ' Z -1
ATPY =z T Zeima © Zeim L )
= czz+d2
where
a i a
c, = " = : ;3 d, = = —T——
2 24 sing sim (tanB+cota ) ° "2 2sim
dz' = d(A'P") = —F——0 dz

2L simy

Incoming attenuation distance for area which can be seen is

X Z, a 2
DE Z+ EtanB = zZ+ ;tanBtana~Etanatan 8

tanltanB)_

= z(1+ >

% tanxtanzs

DE

il
O
N
+
[oR




where

tany tang
¢y = 14 am; tan

atang, tanzﬁ

d1: 4

Incoming attenuation distance for area which cannot be seen is

COo' = z—(ié—x-)tan@ = z+—}ftana -%

z

a a
= ta Zq -—ta Zq a - =
z+2 ney n%y tang >

. tanza a tanzq tan
CO' = a(l+= )‘E“*_—_"E‘z )

= c3 z +td;
where
tanzq
= 1+ ‘
Cs >
d. = _a._(1 + tanzq tang)
3 2 2

Integrals (20) are explicitly for this case:
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(,:‘C HP
2 z e e
0 .

Io(ag_acz_ad)em(cmz+d])/sz+ j a(cz+d)e=[(032+d3)=(Az+B)]/TAdZ

o (o]
T (
. Iaze- z+czz+d2)/'1'C dz
2
o .
o
where: a2 = area of intercepting element
c = tam
-atam tanp
d = ————
2
_ cosB - tam tanB 1
A= o8 a -8 (14 2 )- 2cosy

B - _ & gos tanB (1+ tamtanB) + % tanf
2 cosla-8 2 ’ 2 cosu
acosig -8 a
2o sim cosB 2 tand
Evaivation 6F in ch[‘ valgs !
z, z,
. -d- /7 _ /
(az-ad)e dq/7 I e C‘Z/sza-ace di/ I 2e”C12/T 4,
0 0
z z

o : \ o
+adAe_(d3+B)/T f e.’(03+A‘)"Z'/'Tdz+'a.c:Ae-'(d3+B)/'T f ze—(03+A)Z/’/T(.

o o)

- :
+ aZeCZ"dZ/T ,Jn e-(1+02)z/’rdz (28)

Zo

1z



= >

.°i‘="* zasazzﬂiv

2

d = « fam tat.'le

c = tam -

q . _ fémfanzB '

o = 1 +' tanzd.

1
d, = "‘"(1+

tan< tans )
37 2 ’

2

W
H

- % tanga
2 j:anBA

1 -
27 sim (tanB+cotn) -

The final result of integrating gives:

_ __cos (- '-targ._:talig- e
A "'co'sZc,-B$ (1+ 2 - )~ 2cosx

3-35
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cz
(e 56) = oF([ 222 g £, o], oot

1
A - B o
I e ey Rl I R M
3 (03+A) 3
cz
- [_{1-d - & _% + o]e-nge-c1zég
€4 cq 4
cAz!
- [_{cde-+ g( C )2 - = ﬁAo]e—(d3+B)ge-(03+A)zog
3 C,+A 3
3 n
c? -dog ~(1+c, )z &
* e, © 2%e 27705 (29)
2

The preceeding retrodirective function must now be multiplied
by the probability that a slope will have a given value. If there
~is any significance to a distribution of slopes the distribution
must be about the local normal to the mean lunar surface (or defined
with respect to a tangent to the mean linear surface% For the
bpurposes of atrial calculation we shall take a very simple weight
- function, for example the probability of a given siope may be the
same between +60° and -60° measured from the tangent to the mean
1unar.surface. Let 8' be the angle between the surface facet‘and
the mean lunar surface. See Figure 7 . The retrodirective function
has been derived in terms of the angle g which is the angle between
the surface facet and normal to the direction of-the incident light,

Therefore it is necessary to relate §' to B. One should note that
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if the retrodirective function is integrated over a range of
slopes then the Lommel-Seeliger factor should be modified to
take into account the fact that the lunar surface is made up of
many facets and modify the derivation of the Lommel-Seeliger
law accordingly. This will be done shortly. In the mean time
we denote the modified Lommel-Seeliger factor by L(i,e ,o,8)
where it is now a function of & and 8 as well as i and ¢. The
scattering function will be denoted by s(a). Thus the integral

to be performed is

JL(ie,n,8)s(x)Bla,g,8)f(8")aB"

divided by a normalizing factor jf(B')dB'. In general dB8'=dB.
The general integral can be expressed in terms of 8 and is

therefore of the form:
L(i,e ,»,8)B(x,g,8)dB (30)

We have now introduced the fact that f(B') = f(B) = 1, One
must now simply be careful in stating the limits when the
integration in B is carried out. The limits will be affected
by the value of the angle of incidence, i, with respect to the
normal of the mean lunar surface. For computer evaluation

of the integral one will specify a value of T/a and also a
value of g, We must now also specify the value of i. For

each set of these three quantities one will carry out an
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integration over 8 . 1In order to illustrate the limits on B we
give a specific example.

1. say Bl.. = Bn = 60° If i = 35° 8 will range from 0
to 6-35 = [g!| -i. For positive g , « range is 0° to line of
horizon (mean lunar surface), that is, to 90-i. Thus for any
@,0° to 90°-i, integrate 8 from 0° to |8nl~i. See Figure 9b.

a. For negative B , B8< i; for ao's less than
90-(i-8') integrate 8 from 0 to -i. Figure
9(c).

b. For negative B , |8|>i; for a's lesé than

90-(i-B') integrate 8 from 0 to —i—Bma or only

X
to ~90° if |i+B,.[>90°. Figure 9(d).
The above routine must be carried out for each value of «

for various values of 1i.
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Modification of Lommel-Seeliger Factor

If one makes a correction to the retrodirective function
aSSociated with the inciination of the lunar facets, then the
Lommel~-Seeliger law should be modified in a similar way in order
to consistently treat all factors in the overall brightness.
Referring to Figure 8 AM represents the mean luﬁar surface
éﬁd MP a’surfaée facet. 00' is the direﬁtion of incident light
and O'P the direction of ocutgeing light. AO' = v is ﬁhe
perpendicular distance cof O' below tﬁe mean lunar surfacé. The
outgoing light will be attenuated over the distance O'P rather
than the distance O'M as in the usual Lommel-Seeliger derivation.
In the present derivation we consider the special case where
angles i, ¢ and 24 are all in the same plane. We will then average
the modified Lommel-Seeliger law so derived by weighting the
resulting function by the factor f(8). Although this procedure
is not general it should give one a good measure of the importance
of recognizing the distribution of slopes over the.lunar surface,

From triangle OPM, by law of sines:

0P _ _PM
sin(90-i-a ) ~ sin B
OP sin B

PM =

sin(90-i-a )

From triangle OO'P:

19) z!
sin a =~ sin(90+i-8)
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Thus

z'sinB sim.

5in(90-i-q )sin(90+i~B)

PM =

‘z‘sinBsinl
cos(i+x )cos(i-8)

Thus the usual relationship

y = zcosl = z'cose
used in deriving the Lommel-Secliger law is replaced by
vy = zcosi = (z'+PM)cose

Thus

sinB sim )
cos(i+a J)cos(i-B)’"°

y = zZcosli = z‘cose(1+

Equation 4-21 would then be replaced by

1
LS = £.B, 3 (4 sing sim )

cosi | cose ' 'cos(i+d)cos(i-B)

This expression is not symmetrical in i and ¢ . To symmetrize
it we multiply cosi by the same correction factor but replace i

by € in the correction factor. Thus the Lommel-Seeliger law
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which we will work with will be the following:

| Ot

LS 1 \ 1 -
sinB sim + o (1+ sinB sim

cos(e +a )cos(e-B) cose cosfi+x )cos(4i-8)

cosi(1+

(31)

Since o = ¢-1i, this can also be written, after changing

sinBsim
cos(i+q )cos(i=B)

<
=}

'™ sinBsin(e —-1i)
’ cosecos(i=§7

and then cosi by the same terms after interchanging i and ¢,

fOEQ
LS = 1 , 1
sinB sin(i-e ) sin3sin(e -1i)
cosicos(é-Bj) cose {1+ cosecos(i—éy)

cosi(1+

(32)

Note that in Equation (32) when the correction term to cose 1is
positive the correction term to cosi is negative., Therefore
symmetrization may over compensate introducing too large a
correction to cosi, It may therefore be more reasonéble physically
to divide each correction term by 2 so that a bettet apbroximate

formula may be:




f E
00

3~42

LS = y

+

sinBsin(eni)

cosi(1+

In terms of ¢ and i this

sin8@sin(i-e ) )
2cosicos(e -8 )

cose (14

equation becomes

2coa-cos(i-8)

‘33),

f E)-
LS = ” 2.1 ”
i - |
: . sinB sim ’ .y sinB sim
cosi(1- s 7 : co +1i)( 1 i y
(A 20051(;03\(},4-1«8)) s(a )1+ 2cos(a+1)oos(1—87)
¢34)
For the s=pecial case i = O
foEo
LS = ; : (35)
4 -
sing &1 ’ , 51 =1 .
jo —SinSeine cose (1. Sin8eine

ZCOS(Eus

In this case a = ¢

S0s€ L sl

s0 a can replase ¢ for computation purposes,



Numerlcal Calculatlons

‘For cases1(a) and 1(b) the total llght flux i reaching a'

detector of area a is glven by the product of three factorsa'

1
7005 € /cosi’

(1) iThe‘memei-Seellger fector: In thls form

the fact that one is_lookiﬁg‘at a‘projected area has been-taken
into acccunt since the energy out per unlt area of surface g1ven'
by Equation 4-21 has been divided by cose . (2), The scattering
function b(a) (3) The - retrodirective function. B(a,g) ‘For the

retrodirectlve function one may use any of the expressions previously

derived. The product of thease faotor must be multiplied by

o]

S DAdd .8, is ‘solar energv Ler'unlf area of solar beam° The

fact that thls is spread over a 1lunar azrea 1/0051 was teken into'
account in deriving the Lommel Seellger factor. da is the solld

angle aubtended at the surface of the detector. d? = a/RZ where

a is the area of the detector.. AdQ = A? = adw where dw is the

- RT ‘ :
angle subtended by the v1ew‘d lunar wrea. - dy will be governed

by the length of the detector rubs (See Figure 9). o is the’

- coefficient of reflection of the lunar matter. The final

expression is then

B(a, g)
cose /cosi

1"- (36)

i= Spapb(q.)1+

In applylng Equatlon (36) to the moon as observed from the edrth,

fwe shall proceed as. lf the inten51ty equator r01neldes with the

geographlc equator and that the subearth polnt falls on this 11ne'
at the center of the lunar coordinate system. Then if h is the

uﬁit'normal at the,area of interest on the lunar surface, B the
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lunar latitude of the area, X its longitude, and % the lunar

phase angle, one can write {see Figure 10):

- P A\

n = sinek+?coss(@+x)+aoosBsin(m+X)

I =j
. o_AT

cosi = nel = cosBcos{p+r)

=S A A A

E = jcos p+i sin p+k-O

ﬁof = co0s P cos Bcos(p+x)+sin pcosBsin($+k)
= cos B[ cos mnos($+x)+sinpﬁin($+X)]

A-—i-
cosgc= NeE = vos B8 cos A
a = |9l

Making these substitutions in Equation (36), the light reflected
into a terrestrial detector from a small region of the surface

at position (A ,8) on the moon, at phase angle p 1is
p s ’

ol o] == sl Jeosi ol ;
(. _ L 8in F{m=]p| Jeos|p
i(p.2,8) S pady m 1+cosX/oos(K+@§B(u’g) °

(37)
In the formula we have used the backscattering function
b(oc) = (sirxx+-(rr~a)cosx/ﬂo

Note that when V+ o = 909, the Lommel-Secliger factor requires

i(p,A,B8) to be zero.
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A

Figure 1, Reflecting area A showing angle of incidence i,
angle of reflection ¢, angle o .
i
z
Figure 2.

Incoming path z and outgoing z' after scattering of
light from a point vertical distance y in medium.




Figure 4. Figure used for deriving Hapke's photometric function.

Figure 5. Figure for deriving modified retrodirective function.
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Figure for deriving modified
retrodirective function when
facet makes angle 8 with mean
lunar surface,
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a0
3 | la
A
Figure 7. Collimator tube, detector a and viewed area A on
the lunar surface,.
A
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e
i
A
Y o < 5
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~ cp 7
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E
Figure 8. Relationship between ¢, i, o, and lunar latitude g,

longitude \, and lunar phase angle ¢
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CHAPTER IV

MATHEMATICAL EXPRESSION FOR INFRARED RADIATION
FROM THE LUNAR SURFACE

Introduction

In thi~ chaptcr we =hall give a heuristic argument leading
to a mathematical expressicn for the infrared radiation emitted
from the lunar surface. A number of comparisons with experimental
data of Pettit and Nicholson,1 Sinton,2 and Saari and Shorthill,3
will be made. Tables of the calculated emitted energy are
given in the Appendix for angles of incidence 80°, 60°, 30°,
and 0°, for angles of observation every 5° from 0° to 85°, and
for azimuthal angles between incident and observed rays every
15° from 0° to 180°,

In this work we do not consider wavelength dependence of
the energy; only the total energy integrated over all wavelengths
is considered. We also neglect slight differences in albedo of
the different lunar formations, Such differences between maria
and terrae, for example, will lead to the terrae's being slightly
cooler by perhaps a degree Kelvin or so, under the same conditions
of illgmination, than the maria. These differences are smaller
than the accuracy of the mathematical expression to be presented.

We shall also neglect differences in temperature between
morning and evening, although the data of Saari and Shorthill
seem to indicate that, af agiven angle of incidence and angle of
observation the morning brightness temperature is siightly

warmer than the evening brightness temperature.
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Under these assumptions the angular distribution of
emitted radiation is a function only of the geometry of the
incident and observed rays with respect to the normal to the
lunar surface at the position of the point being observed

(see Figure 3).

Heuristic Derivation of Expression for Emitted Energy

Consider a vertical cliff of height h, with the line of
the cliff ¢, at right angles to the sun's rays which illuminate
the surface at angle of incidence i, as in Figure 1, The bottom
'of the cliff is at B, the edge of the shadow is at S, a distance
BS = htani from the cliff. Suppose this shadow is observed from

the angle of observation ¢, with the phase angle given by
a:i‘f'f ° (1)

Dropping perpendicular from B to the rays AE, DE' which delimit

the region of shadow as observed from the earth, we see that

AB = hsin€
BD = htanicose
So AB +BD = h(tanicoss+sing)
h .. . . hsim
= ~(sinicose +sinc cosi) = ————
cosi cosi

(2)
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Thus a cliff of height h, when illuminated at angle of incidence
i and observed at angle ¢ such that 1 + ¢ =, will give rise

to an area of shadow as projected in the direction of observa-
tion, of hsiml /cosi.

Counsider the situation of Figure 2, in which the phase
angle is given by & = i - ¢. Now the shadowed face of the cliff
is not visible, Dropping a perpendicular from S to A, the dir-
ection of observation of C extended, we wish to calculate the

distance SA, From the figure we have

BS = htani

BD = htane

AF = BDcose = hsirg€

SA = BScose ~AF = htanicos€ -hsine

hsim /cosi (3)

which is the same result as before, In Figure 2 if € > i no
shadow is seen; in fact some of the illuminated area is ob-
scured by the top of the cliff, Therefore the expression

hsim /cosi for the projected shadow area is not always a

correct expression, Further pursuit of the correct expression
for a particular model results in a variety of complicated
trigonometrical formulae which are not particularly enlightening.
Let us take the result hsind/cosi literally and see what it

implies,
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Suppose that there were a large number of such cliffs
on the lunar surface,with some characteristic distance between
them. The flat surface between cliffs, which is illuminated at
angle of incidence i and observed at phase angle 2, we assume
emits in accordance with some law B(i,e ,a) (in cal/cmzmin).
Some of the projected area is in shadow, and is therefore not
emitting. The larger the shadowed area is, the smaller will be
~the amount of energy received by the detector. It seems reasonable
to assume that the fraction of shadowed area increases as siny/
-cosi, so that the energy emitted in the direction of the

detector will be

E(i.c.q) (4)
sinm
cosi

1 +al$

where aj, is some parameter determined by the relationship be-
tween cliff heights and distances beiween cliffs. The above ex-
pression has some reasonable characteristics: At large angles
of incidence, where the shadows are exceptionally long, the term
aasiax/cosi becomes very large and the emitted energy becomes
small, Also at zero phase angle, n = O, the correction in the
‘denominator is zero, so that no shadows would be observed.,
These are certainly features that would have to be preserved in
a more exact treatment of the model, The features give the energy
some strong directional characteristics,

The law E(i,€ ,n ) may also have some directional features,

If the illuminated portion of the surface emits like a black
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body, E(i,e ,0) will be proportional to the energy available
per unit area, Socosi, where S, is the solar constant. Our
studies of the lunar infrared radiation at the subsolar point
indicate tmm'E(i,g,@ must also have some directional component
which has the following characteristics

(a) The directional component is peaked at 2=0.,

(b) It is zero when ¢ = /2.

<

(¢) It varies trigeonometrically rather than exponen=-
tially or algebraically; at the subsolar point
it behaves as cose or cosl,

These features indicate that E(i,g,q) might be of the form
E(i,e ,a) = a1cosi+azcosx 0 (5)

However this does not agree with experiments toe well at large
angles of incidence or observation, approaching 90°, Further,
it does not satisfy condition (2), above.
This expression has most of the features necessary for
a good fit with experiment except the directional component
a,cosl does not vanish at ¢ = 7/2 as it should (except when i =0),
We therefore assume that some more exact medel calculation
would give rise to such a funciion, due perhaps to directional
radiation fromcrater bottoms, which vanishes at ¢ = 7/2. We have

tried to invent such functions; the simplest one is obtained by

replacing cosX by cosy' where

S A




2 2
/ 17 +¢ —215005(4)1—cp{)

nt =a'(ie) = 2/

2.2 .
~—+——1 e~21scos($ P )
TT €

(6)

where mi,$€ are the azimuthal angles of the incident and observed
rays, respectively, measured with respect to some fixed direction
such as the easteriy direction on the lunar surface (see Figure 3).

We did not derive this expression, we simply invented it;
there are obviously an infinite number of such functions of which
this is only the simplest. One can easily verify that cosy' has
the three characteristics listed above Equation (5).

(a) At =0, i=€ andtpi=n€ so 0 '=0 and cosy =1, so
the peak occurs at n=0 and nowhere else,

(b) When €=n/2, a'=n/2 so cosy'=0; the function
thus vanishes at these limits,

(c) The variation of cosy ' between these extremes
is smooth and trigonometrical in nature.

Further study indicates that there is an additional
directional component which is not affected by shadowing of the
type which gives rise to the expression (7). If there are rocks
littering the flat surface, which are more or less séherical in
shape and each part of the surface of which emits like a black
body, then such a spherical body would give rise to an emitted

energy proportional to
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%{(ﬁm!ml)cosiq|+sinlql} (7)

where Ial is the magnitude of the phase angle. This Shoenberg
function arises from integraticn of the emitted energy from an
illuminated black body aud takes account of the fact that the
shadowed portion of the sphere does ncet emit. We may think Pf
a contribution like this a2s being due to either rocks 1ittering
the highlands or to high domes and psaksvﬁhich shadow themselves
to a certain extent.

With this addition, the emitted energy is written ig the
form per unit solid angle

\
A

Iem(

i,&' 9a) = B(ief 9Q)COS€ (8)

where B(i,g,q) is the radiance and cosg 1is a geometrical factor.
em X . s . , . 2.
I and B will have physical dimensions of calories/cm min per

sterad. B(i,6 ,2) will be of the form

. !
a,cosir+a, cos

B(i,e ,x) = ! ey 2 +a3${(ﬁulml)coslal+sin,a|},
]+a4 ﬁ-%% -
cosi

(9)

where a. a3 and a, are adjustable parameters.

10 B2
To avoid difficulties which arise with the expression

sim /cosi at large phase angles, it is further convenieunt to

replace the sim, in this expression by simi‘'. Since we have not
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‘considered overhangs, slanted cliffs, etc., sinmy/cosi can only
be considered a first approximation to the correct expression
anyway,

Our final expression for the infrared radiance of the

lunar surface is

a1cosi+azcosx'

B(i,E,a) = +a3 (ﬂ—,al)cosla|+sinlaf}/n (10)

1+ahsin1'/cosi
‘. )
with o' given by Equation (6), ;

The argument we have given, @eading to Equation (10) can
certainly not be counsidered anythi;g more than a crude heuristic
argument. However as will be seen, by proper choice of the
parameters a, a2,a3 and aj quite  -an accurate fit to the available
infrared data can be obtained, for the whole moon under all
conditions of illumination and observation.

Four adjustable parameters may seem like quite a few;
however from the known incident energy, one condition is obtained
connecting ays,85 and aj, The counstant a), according to our
argument, should be determined in principle by the ratio of
heights of large cliffs or peaks to the distances between them.,
The number of more-or-less spherically shaped rocks on the flat
surfaces should determine a3, and finally the directional character-
istics of the term azcosx' should be due to directional emission

“v»om the bottoms of small craters on the more-or-less flat

S,
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With these gualitative interpretations of the wvarious
terms, we now shall discuss the fit of Equation (10) to the data.
We obtained a large number of data on radiance from the observa-
tions of Pettit and Nicholson, Sinton, and Saari and Shorthill,
and ran a least squares analysis to determine ai(i = 1,2,3,4)°
The values so determined gave an rms error of about .05 cal/cmzmin.

The actual values of a,, a

31 2y all are rather small compared to

aq, and the rms error does not change significantly if ay, a3, ay,

are varied by 50% or so. Therfore we made further adjustments

of ayy aq and ay, to obtain better fits to certain selected data.
One datum of considerable reliability is the integrated

energy from the subsolar point, 1.88 cal/cmzminoh Using the

fact that ay,; a3, a), are all small compared to ajs requiring the

integrated energy to have this value gives the condition
0.2992 = 3a +=a, +0.40ka, ~xa a, +ra, as- 1963a,a (11)
° 28y t38,% e 3732 LR YT 28
This condition can easily be satisfied by adjusting a, and a3
slightly, withcut significantly changing the rms error,

The brightness distribution along the equator at full moon

will be fit satisfactorily if

_;2__2= .55 (12)

o

The brightness distribution along the equator at first and
third quarter moons will be fit at large angles of incidence

provided ag = 0.074 o (13)
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By proceeding in a similar way, one can obtain a number of
conditions on the parameters to obtain good fits in the neorth-
south direction at full moon or quarter moon, or at socme chosen
point such as the subsolar point, and so forth. These conditions
are not all consistent, reflecting the fact that Equation (10)
is not a perfect expression for the emitted radiation.

After examination of the available data, we have se¢lected
the fellowing values of the parameters Ay, ay, a3, a;, for which

4

(10) best represents the lunar infrared radiatior under all

conditions:

= 0.481 cal/émzmin

a, =
2 .
a, = 0.140 cal/cm"min
ag = 0.074 cal/cmzmin
a), = 0.121 (14)
These give 2 net rms error of ,052 cal/cmzmin. Generally if one

of the conetunts is changed %o produce a better fit of some

selected subset of the data, the agreement will be made worse

somewhere else,

Compariscn with experiment

I I'igures 4, 5, 6, and 7 we give comparisons of the cal-
culated energy with experimental data for certain selected cases
which we believe gives a fair idea of how well Equation (10)
agrees with experiment.

In Figure 4 values of mB(0,¢ ,¢) are plotted as a function

of ¢, together with data obtained from Sinton2 and Pettit and
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Nicholsonj The agreement 1is satisfatory in view of the wide
scatter in the data, except possibly at very large ¢ (near 90°)
where it may be possibly not decrease rapdily enocugh. We note
also that the data points taken from Pettit and Nicholson1 are
subject to a caliibration error and should be corrected downwards
by about 9%,h A reasonably good fit at the subsolar point is
deéirable since the quantity of energy involved (1.88 cal/cmzmin)
is greater there than at any other point on the moon,

In Figure 5, the calculated brightness temperatures along
the equator at first and third quarter moons are compared with
experiment. The agreement is quite good, The limiting wvalue of
173° for the brightness temperature at the terminator is obtained,
due to the presence of the term involving aB

In Figure 6, the theoretical expression is compared with

in Equation (10).

observations at full moon along the equator and in the north-

south directions. Agreement along the equator is very good; in
the north-south directions however, the calculated brightness 1is
a few degrees too high. Agreement here could be improved by
different choices of ai(i:1,2,3,4) but would suffer elsewhere,
We note the large deviation of the data from the cos1/66 law
proposed by Pettit and Nicholson, Our expression at full mocn

reduces to

B(i,1i,0) = a1cosi+a +a (15)

273

(i=6) which is in quite good agreement with observation,
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In Figure 7 we have plotted the calculated brightness
temperature versus observation]for another extreme case, an angle
of incidence 80°, at various angles of observatiou, along the
lunar equator. The agreement is satisfactory,

In Appendix’IV-A, complete tables of the infrared brightness,
determined by Equations (10) and (14), are given.
| Table 4-1 gives our results on a check of energy balance
at a position at which the angle of incidence is i. Column 1
conta ns the heat energy integrated over all aungles. Column 2
contains the average reflected energy ét this position assuming
a mean normal albedo of °105‘and a mead compaction parameter of
.50. In the third column is theétotal‘energy leaving the lunar
surface. The last column is the available energy, Spcosi, and
should compare with the energy in colﬁmn 4, The agreement is

seen to be reasonably good.

Conclusions

A mathematical expression has been presented which repre-
sents reasonably well the infrared component of 1ﬁnar radiation
under almost all conditions of illumination and observation° The
lunar infrared radiation may be consi.dered as due mainly to
black-body radiation (following Lambert's law), sincevthe
coefficient a is so large compared to fﬁé other parameters.
There are in addition directional components, which are peaked

back toward the sun in the direction a=0. These are probably
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Test of Energy Balance on the Lunar Surface |
Angle Integrated Integrated Average
of Infrared Reflected Heat Sum of
Incidence Energy Energy Conducted Pre-
(cal/cnfmin) (cal/cﬁiﬁn) away from ceeding
Surface Columns Scosi
(cal /cnfmin)
0° 1.87 .096 010 1.98 1.99
5°© 1.86 ,096 .0%0 1,97 1.98
10° * .84 .095 L0117 1.95 1,96
150 1.81 .093 .011 1,91 1.92
20° 1.77 .091 011 7,87 1.87
. 25° 1.71 . 088 012 1.871 1.80
30° 1.63 .085 .012 1.73 1.72
350 1.55 .08 .012 1.64 1.63
Loe 1.45 .076 .012 1,54 1.52 |
- Lo 1,304 071 .012 1.42 b |
500 1.23 . 065 .0711 1.31 1,28 l
- 55° 1,10 .059 .010 1,17 1,14
60° . 967 0516 001 1,03 1,00 :
65° .826 .0lL37 .007 .88 . 8L :
70° .681 ,0352 . 006 .72 . 681
75° 532 . 0260 004 »56 .515
- 80° .380 0162 . 001 .40 346
850 .230 ,0063 -, 0071 024 .173
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due to features such as rocks or domes which shadow themselves,
the illuminated portions following Lambert's law, to high cliffs
or peaks which cast long shadows, and to directional radiation
from the bottoms of ths craters.
We have not given a complete model of the rough surface,

but have more or less invented an expression which fits the data.

Further work in this problem should probably consider more in

detail the radiation from such rough surface features, with a
view to improving the mathematical form of the contributions due
to directional components, which has bz -+ expressed through the
(reasonable) expression (7) and the (highly artificial) ex-
pfession (6). The effect of shadowing as expressed in Equation

(4) is probably not too far off,




Table L4-2

Heat conducted away from Lunar Surface in
units of cal/cm?min.

Explanation of table: The energies are calculated using the
formula derived by Sinton,2

3
1 A
F, = —(%5)2(kpc)%z fH'Tncos(Znn9+sn+ﬁ/n)

n=0
1
where (kpc)?2=.001 is the thermal inertia, P is ithe period of the

moon in sec, and Tn and €, are given as follows:

Ty = 210°K €, = 0

T, = 157°K €4 = -6°
= o =

T2 = 34°K €, = +6
= ° < =

T3 = 30°K €4 +159

The angle 5 is measured from the subsolar point. Only values
along the equator are given, with 8 wvarying from -180° at lunar
midnight, through morning and evening back to +180° at midnight.

. . 2 . P
Fo is in cal/cm min. .

3 F, 6 F0
-180° -, 004k -130° -,0095
-1750° -,0049 -125° -.0085
~170° -,0056 ~-120° -,0070
~1650° -.0065 -1150° ~.0050
-160° -.0075 -110° -.0026
-1550° - .0085 -1050° -,0000
~150° -.0094 ~100° +.,0029
~1h50° -,0100 -950° +.,0059
-140° -.,0102 -90° +,0088

~1350 -.0101 -850 ,0117



-80°
-75°
-70°
~650°

-60°

-55°
_500
-450
400
-35°
-30°
-25°
-20°
-1 50
-10°

0o

50
10°
150
20°
259
30°
350
oo
450
50°

Table 4-2 (Continued)

0143
0166
0385
.0799
.209
L0214
0214
.0210
.0202
0192
.0179
.0166
.0152
.0138
.0125
L0114
.0104
.0095
.0087
.0080
L0074
.0667
.0059
.0051
- .0040
.0027
.0012

9 F_
550 -.0005
60¢ -.0024
65 -.0045
T0° . 0067
750° -.0089
80° =.0111
85¢ ~-.0130
90° -.0148
950 ~-.0163
100° -.0174
105° -.0181
110° -.0183
1150 -.0181
120° -.0175
125° -.0165
130° -.0151
135° ~.0136
1400° -.0119
1450 -,0101
150° -.0085
1550 -.0071
160° -.0059
165° -.0049
170° -.0044
1750 ~ -.0042
180° -.0044

o221
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Calculated Emitted Energies from the Lunar Surface
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0.0945
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APPENDIX IV-A (Continued)

L2,

Energy
Magnitude in Cal/cm
Angle of Angle of Azimuthal of per min/
Incidence Observation Angle, etc, Phase Angle Steradian
80.0 10.0 30.0 88.7 0.0860
80.0 15,0 30.0 93,0 0.0820
80.0 20.0 30.¢0 97.4 0.0783
80.0 25,0 30.0 101.,7 0.0748
80.0 30.0 30.0 106.0 0.0715
80.0 35.0 30.0 110.3 0.0685
80.0 40.0 30.0 114.5 0.0658
80.0 45,0 30.0 118.7 0.0633
80.0 50.0 30,0 122.8 0.0611
80.0 55.0 30.0 126.8 0.0591
80.0 60.0 30.0 130.7 0.0573
80.0 65.0 30,0 134.4 0.0557
80.0 70.0 3C.0 137.9 0.0544
80.0 75.0 30.0 141.2 0.0532
80.0 80.0 30.0 144.1 0.0522
80.0 85.0 30.0 146.6 0.0514
80.0 0.0 45.0 80.0 0.06945
80,0 5.0 45.0 83.6 0.0909
80.0 10,0 45,0 87.1 0.0874
80.0 15,0 45,0 90.7 0.0839
80.0 20,0 45,0 94.3 0.0806
80,0 25.0 45,0 97.9 0.0775
80.0 30.0 45,0 101.4 0.0745
80.0 35.0 45.0 104.9 0.0717
80.0 40,0 45.0 108.3 0.0691
80.0 45.0 45.0 111.7 0.0667
80.0 50.0 45,0 115.0 0.0645
80.0 55.0 45.0 118.1 0.0624
80.0 60.0 45,0 121.1 0.0606
80.0 65.0 45,0 123,9 06.0589
80.0 70.0 45.0 126.5 0.0575
80.0 75.0 45,0 128.9 0.0562
80.0 80.0 45.0 131.0 6.0550
80.0 85.0 45.0 132.7 0.0540
80.0 0.0 60.0 80.0 0.0945
80.0 5.0 60.0 82,5 0.0919
80.0 10.0 60.0 85.1 0.0892
80.0 15,0 60.0 87.7 0.0866
80.0 20.0 60.0 90.3 0.0839
80.0 25.0 60.0 92.9 0.0813
80.0 30.0 60.0 95.5 0.0787
80.0 35.0 60.0 98.1 0.0763
80.0 40.0 60.0 100.6 0.0739
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APPENDIX IV-A (Continued)
Energy
Magnitude 1in Cal/cm
Angle of Angle of Azimuthal of per min/
Incidence Observation Angle, etc, Phnase Angle Steradian
80,0 45,0 £0.3 193.% G.,0717
83.0 50, G 60,0 15,4 0.7696
8C, 0 55,0 L. 17,7 J.0676
80,0 6T, 0 60,0 109,9 0. 0657
80,0 €5, 0 63,0 1i1.9 C,0640
80.0 70,0 £, 0 113.8 0.0e25
80,0 75,0 L0006 1i5,5 G.0611
80.0 B, 0 60,0 il7.1 G, 0598
80,0 85. 35 60,0 iL8.4 . 3587
BO.D 6.0 75,0 B, W 0.0945
8C,0 5.C 75,90 81.3 02,0931
80,0 1c,2 75.%C 82,7 U.0915
80,0 i5.0 75,0 84,2 {.08%8
80,0 25,0 75,0 5.6 C.0BBD
BC. G 25,0 75,0 8B7.2 ¢, 0861
80,C 30,0 75,0 88,7 06,0841
80, C 35.0@ V5.0 g0, 2 30,0822
8G.0 43,0 V5.0 93.8 G, 0822
80.0 45,0 73,6 F3.3 V. 0783
80,06 50.0C 75,0 ¢4,8 C.0765
80.C 55,1 P5.0 9¢.3 D.0746
80.0 €. 0 75,0 97.7 ¢, 0729
8C. ¢t €5, 75,0 ¢9.1 C.o712
80,0 70,7 75,0 100.4 00,0696
80.0C 75, ¢ 75,8 i01.6 0.0682
8C. G 0.0 75.0 102.8 C.0668
80. 85,0 75.0 103.8 0,.0655
80C, g, ¢ CRR 8C. 0 2.0945
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APPENDIX IV-A (Continued)

Energy
Magnitude in Cal/cm2
Angle of Angle of Azimuthal of rer min/
Incidence Observation Angle, etc, Phase Angle Steradian
80.0 80,0 ag L0 88.3 0.0759
80.0 85.0 9C. 0 86,1 0.0744
80.0 0.0 155,0 89,3 0.0945
80.0 5.0 135.0 8.7 0.0957
80.0 10,0 105.0 77.6 0.0967
80.0 15.0 165,0 76,5 £,.0975
80.0 2C, 0 165,¢0 75,5 $.0980
80.0 25.0 105.0 74,6 00,0982
80.0 30,0 165.9 73,9 ;. 0981
80.0 35.0 105,06 73,2 2.0978
80.0 40,0 165,90 72,7 G.0973
80.0 45,0 195.¢0 72.4 0.0G665
80.0 538.0 125.6 72.1 6.0955
80.0 55,0 165.0 72.5 0.0943
80.0 60,0 165.0 72.1 0.0930
80.0 €5.0 185,49 72,3 ¢.2916
80,0 70,0 105,060 72.6 0.0900
80, 0 75,10 105,0 73.1 0.0884
80.0 8G, 0 185, ¢ 3.7 ¢.0867
80,0 R5,0 1¢5.0 74.4 0.0849
80.0 J. 0 124¢,0 B8O, 0 0¢.0945
80.0 5.0 120.0 77.5 0.0973
80.0 16,0 12G.0 75.1 0.0994
80.0 15,0 120,0 72,8 06.1015
80.0 20,0 120.0 70.6 00,1034
80.0 25,0 120.0 68,6 0.105C
80.0 30.0 V20,0 66,6 0.1063
80.0 35,0 120,0 64.9 0.1072
80.0 40,0 120,90 €63.3 0.1077
80.0 45,9 125,80 €1.9 0.1077
8C.d 50.0 122.0 60,7 0.1074
80.0C 55.0 120.0 59.8 0.1067
80.0 66.0 120.0 59.1 $.1057
80.0 €5.0 120.2 58.7 0.1043
80.0 70.0 120.,¢C 58.5 c, 1027
80.0 75.0 120.9 58.6 0.1008
80.0 80.0 120.0 59,4 0.0987
80.0 85,0 120,90 59,6 0.0965
80.0 0.0 135.0 80,0 0.0945
80.0 5.0 135.0 76.5 0.0981
80.0 10,0 135.0 73.0 6.1017
80.0 15.90 135.0 69.6 0,1053
80.0 20, C 135,0 66.3 G.1086
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APPENDIX IV-A (Continued)

Energy
Magnitude in Cal/cm?
Angle of Angle of Azimuthal of per min/
Incidence Observation Angle,etc, Phase Angle Steradian
80.C 25.90 135,0 £3.1 0.1118
80.0 36.0 135,0 60,1 0.1146
80.0 35.0 135.0 57.2 6.1171
80.0 40,0 135,0 54,5 0.1190
80.0 45,0 135,08 52,0 3.1204
80.0 50.0 135,¢ 49.8 0.1211
80.0 55.0 135,0 47,9 C.1211
80.0 60,0 135,0 4¢. 4 §.1205
80.0 65.0 135,90 45,2 ¢.1191
80,0 70.0 135,0 44,5 01171
80,0 75.0 135,70 44,1 0.1146
80.0 8C.C 135,0 44,3 6.1116
80,0 85.0 135,90 44,9 0.1083
80.0 0.0 150,0 £.0 €.3945
80.0 5.0 150.0 75,7 G, 0990
80.0 16.0 15,0 7i.4 2,1036
-80.0 15.38 15¢,0 67,1 5.,1084
80.0 20.0 150.0 62.9 0.1131
80.0 25,0 15G.¢ 58.8 0.1178
80.0 30,0 150.C 54,8 0.1224
80,0 35,0 150,G 50,8 0.1267
80,0 40,0 150.¢0 47.1 0.1307
80.0 45,0 150.0 43.5 0.1342
80.0 53.¢C 15¢,0 40,1 0.1369
80.0 55.90 150.0 37.0 0.1386
8C.0 60,0 150,0 34,4 G.1391
8G. ¢ 65.0 156.0 32,2 0.1383
80.0 70.0 i5¢.0 30.6 £.1359
80.0 75.0 150.0 29.7 0.1320
80.0 8C.0 150.0 29.5 0.1268
80.0 85.0 150,06 30.1 0.1206
80.0 .G 165.0 8C. 0 0.0945
80.0 5.0 165.0 75.2 0.0996
8C.0 16,0 165.0 70.4 0.1049
80,0 15,0 165.0 £5.5 0.1104
80.0 20,0 165.0 60,8 0.1161
80.0 25.0 165.0 56.0 g.1221
80,0 30.0 165.0 51,2 0.1282
83,0 35,0 165.0 46,5 0.1344
80,0 40.0 165.0 41.9 0.1408
80.0 45,0 165.0 37.3 0.1473
80.0C 50,0 165.¢C 32.8 G.15%36

80.0 55.0 165.0 28.5 0.1597
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APPENDIX IV-A (Continued)

Energy
Magnitude in Cal/cm?
Angle of Angle of Azimuthal of per min/
Incidence Observation Angle.etc, Phase Angle Steradian
80.06 60,0 165.0 24,4 0.1651
80,0 65.0 165,0 20,7 0.1689
80.0 70.0 165,0 17.6 0.1699
80.0 75.0 165.0 15.5 0.1663
80.0 80.0 165.0 14,8 0.1566
80.0 85,0 165,0 15.7 0.1406
80.0 0,0 180.0 80,0 0.0945
80.0 5.0 180,0 75.0 6.0998
80,0 10.0 18¢.¢ 70.0 0.1053
80,0 15,0 180,0 65.0 c.1111
80.0 20,0 180.,0 60.0 0.1172
80.0 25,0 180.0 55.0 6.1237
80.0 30.0 180,0 50.0 0.1304
80.0 35.0 180.0 45,0 0.1375
80.0 40.0 180,0 40,0 0.1451
80.0 45,0 180.0 35.0 0.1534
80,0 50,0 18¢,0 30,0 0.1625
80.0 55.0 180,0 25.0 0.1728
80.0 60,0 1830.¢C 20,0 0.1850
80.0 65,0 18C¢.0 15,0 G,2001
80.0 70.0 18C.0 10,0 0.2201
80.0 75.0 180.0 5.0 0.2493
80.0 80.0 180.0C 0.0 0.2975
80.0 85.0 18¢.0 5.0 0.2235
€0.0 6.0 0.0 60,0 0.3021
60.0 5.0 0.0 65.0 0.2925
60,0 10,0 0.0 70.0 0,.2834
60.0 15,0 .0 75.0 0.2746
60.0 20,0 0.0 80.0 0.2663
60.0 25,0 0.0 85,0 0.2585
60.0 30.0 0.0 90.0 0.2511
60.0 35,0 0.0 95.0 0.2441
60.0 40,90 0.0 100.0 0.2376
60,0 45,0 0.0 105.0 0.2316
60.0 50.0 0.0 110.0 0.2259
60.0 55,0 .0 115,0 0.2207
60,0 60.0 0.0 120.0 0.2159
60,0 65.0 0.0 125.0 0.2115
60.0 70.0 0.0 130.0 0.2075
60.0 75.0 0.0 135.0 0.2039
60.0 80.0 0.0 140,0 0.20006
60.0 85.0 6.0 145,0 0.1977
60,0 0.0 15,0 60,0 0,3021
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APPENDIX IV-A (Continued)

Energy

Magnitude in Cal/cm?

Angle of Angle of Azimuthal of per min/

Incidence Observation Angle etc., Phase Angle Steradian
60.0 5.0 15,0 €4.8 0.2928
60.0 10.9 15,¢ €9.7 0.2839
60.0 15,0 is. ¢ 74.5 0.2753
60.0 20,0 15,0 79.4 0,2671
60.0 25,0 15.6 84,3 0.2594
60.0 3C.0 15,0 89.2 0.2520
60,0 35.0 15,0 94.0 0, 2451
60,0 40, ¢ 15,2 28,9 0.2386
60.0 45,0 15.0 103.8 0.2325
60.0 50.0 15,0 i¢8.6 0.2269
60.0 55.0 15,0 113.5 0,2216
60.0 60.0 15,8 118.3 0.2168
60.0 65.0 15,9 123.1 ¢.2123
€0.0 70,0 15,0 128,90 0.2083
60.0 75.6 i5,0 132.7 C.2046
60.0 80.0 15,0 137.5 g.2012
60.0 85.0 5.0 142,2 0.1982
0.0 3.0 30,0 60.0 0.3021
60..0 5.0 30,0 4.4 0.2937
60.0 1,0 30,0 6£8.8 0.2854
60.0 15.¢ 30,0 73,2 0.2773
60.0 20,0 30.0 T7.7 0.2696
el.0 25,0 30,0 82.2 0.2621
£2,0 3.0 30.0 86.7 0.2549
€0, 0 35.0 3¢.0 91,2 : 0. 2481
2.0 46,0 30.0 95.7 0.2416
60,0 45,0 30.90 100,2 0.2355
€0.0 50.0 30.0 ic4,.7 0.2298
62,0 55.0 30,0 19,1 0,2244
6C. 0 60.0 30.0 113.5 0.2194
60.9 65.0 30,0 117.9 0,2148
60.0 70,0 30.0 122.3 0,2105
€0,0 75.0 3.0 12¢.5 C.2066
60.0 80,0 30,0 130.7 0,2030
6C,0C 85,0 30,90 134, 7 0.1998
€0.0 4,0 45,0 60.0 G.3021
60.0 5.0 45,0 63.6 0.2951
66.0 10,0 45.0 67.3 0,2879
60.0 15,0 45.0 71,1 0.2807
60,0 20,0 45,0 74.9 0.2736
6G.0 25,0 45,0 78,8 0.2666
60,0 30.0 45,0 82.7 0.2597

£0.0 35.90 45,0 86,7 0.2531
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APPENDIX IV-A (Continued)

Energy

L-30

Magnitude in Cal/cm?
Angle of Angle of Azimuthal of per min/
Incidence Observation Angle,etc. Phase Angle Steradian
60.0 40,0 45,0 90.6 0.2467
60.0 45,90 45.0 94.6 0.2406
60.0 50.0 45,0 98.5 0,2348
60.0 55.0 45,0 102.4 0,2293
60.0 60.0 45.0 106.3 0.2241
60.0 65.0 45,0 110.1 0.2192
60.0 70.0 45,0 113.9 0.2146
60.0 75.0 45,0 117.5 0.2104
60.0 80.0 45.0 121.1 0.2064
60.0 85.0 45,0 124.5 0,2028
60.0 0.0 60.0 60.0 0.3021
60.0 5.0 60.0 62.6 0.2970
60.0 10.0 60.0 65.3 0.2913
60.0 15,0 60.0 68.2 0.2854
60.0 20.0 6C.0 71,2 0.2792
60.0 25,0 60,0 74.3 0.2729
60.0 30.0 60,0 77.5 0.2666
60.0 35.0 60.0 80.7 0.2603
60.0 40.0 60.0 84.0 0.2541
60.0 45,0 60.0 87.3 0.2481
60.0 50.0 60.0 90.6 0.2422
60.0 55.0 60.0 93.9 0.2365
60.0 60,0 60.0 97.2 0.2310
60.0 65.0 60.0 100.4 0.2258
60.0 70,0 60.0 103.6 0.2209
60.0 75.0 60.0 106.8 0.2162
60.0 80.0 60.0 109.9 0.2118
60.0 85.0 60.0 112.8 0.2076
60.0 0.0 75.0 60.0 0.3021
60.0 5.0 75.0 0l.4 0.2992
60.0 10.0 75.0 63.0 0.2955
60.0 15.0 75.0 64.9 0.2912
60.0 20.0 75.0 66.8 0.2864
60.0 25,0 75.0 69.0 0.2812
60.0 30.0 75.0 71.3 0.2756
60.0 35.0 75.0 73.7 0.2699
60.0 40.0 75.0 76.2 0.2640
60,0 45,0 75.0 78.8 0.2581
60.0 50.0 75.0 81.4 0.2521
60.0 55,0 75.0 84,1 0.2463
60.0 60.0 75.0 86.8 0.2405
60.0 65.0 75.0 89.5 0.2349
60.0 70,0 75.0 92.3 0.2294



o

APPENDIX IV-A (Continued)

4-31

Energy

Magnitude in Cal/cm?
Angle of Angle of Azimuthal of per min/
Incidence Observation Angle,etc. Phase Angle Steradian
60.0 75.0 75.0 95.0 0.2242
60.0 80.0 75.0 97.7 0.2192
60.0 85.0 75.0 100.4 0.2144
60.0 6.0 90.0 60,0 0.3021
60.0 5.0 90.0 60.1 0.3017
6C.0 10.0 90,0 60.5 0.3003
60.0 15.0 90,90 61.1 0.2981
60.0 20.0 90,0 62,0 0.2950
60,0 25.0 90.0 63.1 0.2913
60,0 30.0 90.0 64.3 0.2869
60,0 35.0 90.0 65.8 0.2820
60.0 40,0 90.C 67.5 0.2766
60.0 45,0 96.0 69.3 0.2710
60.0 50.0 90.0 71.3 0.2651
60.0 55.0 930.0 73.3 0.2590
60.0 60.0 90.0 75.5 0.2529
60.0 65.0 90.0 77.8 0.2467
60.0 70.0 90.0C 80.2 0.2406
60.0 75.0 90.90 82.6 0.2346
60.90 80.0 90.0 85.0 0.2287
60.0 85,0 90.8 87.5 0.2230
60.0 0.0 1¢5.¢0 60.0 0.3021
60.0 5.C 105.0 58.8 0.3043
60.0 16.90 105.0 57.9 0.3055
60.0 15,0 105.0 57.2 0, 3057
60.0 20,0 105.0 56.9 0.3049
60.0 25,0 105.0 56.8 0.3032
60.0 30.0 105,90 57.0 0.3004
60.0 35.0 105.0 57.4 0.2968
60.0 40,0 105.0 58.2 0.2924
60.0 45.0 105.0 59.2 0.2872
60.0 50.0 105.0 60.5 0.2814
60.0 55.0 105.0 61,9 0.2752
60,0 60.0 165.0 63.6 0.2686
60.0 65.0 105.0 65.5 0.2617
60.0 70.0 105.0 67.6 0.2546
606.0 75.0 105.0 69.8 0.2475
60.0 80.0 105.0 72.1 0.2403
60.0 85.0 165.0 74.5 0,2333
60.0 c.0 120.0 60.0 0.3021
60.0 5.0 120.9 57.6 0,3067
60.0 10.0 120.0 55.4 0.3106
60.0 15,0 120.0 53.5 0.3136



APPENDIX IV-A (Continued)

4-32

Energy

Magnitude  in Cal/cm?

Angle of Angle of Azimauthal of per min/

Incidence Observation Angle,etc. Phase Angle Steradian
60.0 20.0 120.0 51.8 0.3156
60.0 25.0 120,0¢ 50.5 0.31¢€5
60.0 30.0 120.0 49.5 0,3.61
60.0 35.0 120.0 48.9 0,3145
60.0 40.0 120.0 48.6 0.3114
60.0 45,0 120.0 48.7 0.307%
60.0 50.0 120.0 49,2 0.3022
60.6 55,0 124.0 50,1 0.2958
60.C 60.0 122.0 51.3 C.2886
60.0 65.0 120.0 52.9 0.2807
60.0 70.0 129.0 54,7 0.2722
60.0 75.0 120.0 56.8 0.2633
60.0 80.0 1206.0 59.1 0.2542
60.0 85.90 124.0 61.6 0.2449
60.0 0.0 135.¢ 63.0 0.3021
60.0 5.0 135.0 56.5 0.3089
66.0 10,0 135.0 53.2 0.3154
60.0 15,0 135.0 50.1 0.3212
60.0 20,0 135.0 47,2 0. 3264
60.0 25.0 135,90 44,6 0.3305
60.0 36.0 135,04 42,3 0.3334
60.0 35.0 135.¢ 40,5 0.3349
60.0 40,3 135.0 39.0 0.3347
60.0 45.0 135,40 38.1 3.3326
60.0 50.0C 135.¢ 37.8 0.3287
60.0 55.0 135.0 38.0 0.3228
60.0 60.C 135,0 38.7 0.3152
60,0 65.0 135.0 40,0 0.3059
60.0 70.0 135.0 41.7 0.2953
60.0 75.0 135,0 43.9 0.2835
60,0 80.0 135,0 46.4 0.2710
60.0 85.0 135.0 49.2 00,2579
60.0 0.0 150.0 60,0 0.2031
60.0 5.0 150.0 55.7 0.3107
60.0 10.0 150.0 51.5 0.3193
60.0 15.0 150.0 47.4 0.3277
60.0 20,0 150,0 43.4 0.3359
60.0 25.0 15¢.0 39.6 0.3436
60.0 30.0 15¢.0 36.1 0.3506
60,0 35,0 150.90 32.9 0.3564
60.0 40.90 i50.0 30.1 0.3607
60,0 45,0 150.0 27.9 0.3628
60,0 50,0 1590.90 26.4 0.3624
60.0 55,0 150.0 25.7 0.3589



APPENDIX IV-A (Continued)

h-33

Energy
Magnitude in Cal/cm
Angle of Angle of Azimathal of per min/
Incidence Observation Angle.etc, Phase Angle Steradian
60,0 60.0 150.0 25.9 0.3520
60.0 65.0 150.0 27.0 0.3418
60.0 76,0 150.0 28.9 0.3284
60.0 75,0 15¢0.0 31.4 0.3122
60.0 86,0 150.0 34,4 0.2936
60.0 85.0 150.0 37.7 0.2734
60.0 0.0 165.0 60.0 0, 3021
60.0 5.0 165.0 55,2 0.3118
60.0 iG.0 i65.0 50.4 0.3218
60.0 15,0 165.0 45.6 0.3321
60.0 20,0 165.0 43,9 0.3427
60.0 25,0 165.0 36,2 0.3534
60.0 30.0 165.0 31.6 0.3642
60.0 35.0 165.0 27.2 0.3749
60.0 49,0 165.0 23.0 0.3850
60.0 45,0 165.¢ 19.1 0.3941
60.0 50,0 165.0 15,8 0.40190
60.0 55,0 165.0 13.6 0.4042
60.0 60.0 165,0 13,0 0.4618
60.0 65,0 165.0 14,2 0.3926
60.0 70.0 165.0 16.8 0.3766
60.0 75,0 165.0 20.4 0.3544
60.0 830.0 165.0 24.4 0.3265
€0.0 85.0 165.0 28,7 0.2937
60.0 0.0 180.0 0.0 0.3021
60.0 5.0 180,0 55.0 00,3122
60.0 10.0 180.,0 50.0 0,3227
60.0 15,0 180.90 45,0 0.3337
60.0 20.0 180.0 40.0 0.3451
60.0 25.0 180.0 35.0 0.3571
60,0 30.0 180.0 30.0 0.3696
60.0 35.0 180.0 25,0 0.3826.
60.0 40,0 180.0 20.0 0.3962
60.0 45.0 180.0 15.0 0.4104
60.0 50.0 180.0 10.0 0.425¢C
60.0 55.0 180.0 5.0 0.4398
60.0 60.0 180.0 0.0 0.4545
60.0 65.0 186.0 5.0 0.4376
60,0 70.0 180.0 10.0 0.4152
60.0 75.0 180.0 15,0 0.3865
€0.0 80.0 180,90 20,0 0.3510
60,0 85.0 180.0 25,0 0.3084
30,0 0.0 .0 30.0 0.5681
3Q.0 5.0 0.0 35.0 0.5559



)

APPENDIX IV-A (Continued)

Energy

b-34

. Magnitude in Cal/cm
Angle of Angle of Azimithal of per min/
Incidence Observation Angle,etc., Phase Angle Steradian

30,0 10.0 0,0 40,0 0.5434
30.0 15.0 0.0 45.0 0.5309
30.0 20.0 0.0 50.0 0.5184
30.0 25,0 0.0 55.0 0.5059
30,0 30.0 0.0 60.0 0.4936
30.0 35.0 0.0 65,0 0.4816
30,0 40.0 0.0 70.0 0.4697
30,0 45,0 6.0 75,0 0.4583
30,0 50.0 6.0 80.0 0.4471
30,0 55.0 ¢.0 85,0 0.4364
30,0 60.0 0.0 90.90 0.4260
30.0 65,0 0.0 95,0 0.4162
30,0 70.0 0.0 100.0 0.4067
30.0 75.0 0.0 105.0 0.3978
30.0 80.0 0.0 110.0 0.3894
30.0 85,0 0,0 115.0 0.3814
30.0 0.0 15.0 30,0 0.5681
30.0 5.0 15.0 34,9 0.5562
30.0 10,0 15.0 39.7 0.5440
30.0 15,0 15,0 44.6 0.5317
30.0 20,0 15,0 49,6 0.5193
30.0 25,0 15,6 54,5 ¢.5070
30.0 30.0 15.C 59.4 0.4947
30.0 35.0 15,0 64.4 0,4827
30.0 40.0 15.0 69.3 0.4709
30,0 45,0 15.0 74,3 0.4594
30.0 50,0 15.0 79.2 0,4482
30.0 55.0 15,0 84.2 0.4374
30.0 60.0 15.0 89.2 0,4270
30,0 65.0 15.0 94,1 0.4171
30.0 70.0 15.0 99.1 0.4076
30.0 75.0 15,0 104.0 0.3985
30.0 80.0 15.0 109.0 0.3900
30.0 85.0 15,0 113.9 0. 3819
30.0 0.0 30.0 30,0 0.5681
30.0 5.0 30,0 34.4 0.5573
30.0 10,0 30.0 39.0 0.5459
30.0 15.0 30.0 43,6 0.5342
30.0 20.0 30.0 48.3 0.5222
30.0 25.0 30.0 53,0 0.5102
30.0 30,0 30.0 57.8 0.4981
30.0 35.0 30.0 62.5 0.48¢2
30.0 40,0 30.0 67.4 C.4744
30.0 45.0 30.0 72.2 0.4628
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APPENDIX IV-A (Continued)

Angle of
Observation

Azimuthal
Angle,etc,

Magnitu e
of
Phase Angle

Energy

in Cal/cm?
per min/
Steradian

30.0
3GC.0
30,0
30,0
30.0
30,0
30.0
30.0
30.0
30.0
30,0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30,0
30.0
30.0
30.0
30.0
30,0
30.0
30.0
30,0
30.0
30,0
30.0
30.0
3C.0
30.0
30.0
30,0
30,0
30.0
30.0
30.0
30.0
30.0
30.0
30,0
30.0

50,0
55.0
60,0
65.0
70, ¢
75,80
80,9
85,90
6.0
5.0
10.0
15.0
20.0
25,0
30.0
35,0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75,0

34,0
30,0
3c.0
30.0
3G,Q
36,0
3.0
3n.0

45,0
45,0

45,0
45,0
45,0
45,0
45,0
45,0
45,0
45,0
45.0
45,0
45,0
45.0
45.0
45,0
45.0
45.0
60,0
60. D
60.0
€0.0
6C.0
60.0
60.0
60,0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60.0
60,0
60.0

TTe0
81.8
B6, 7
91,5
96,4
101,2
106, 0
11¢.,8
35,0
33.7
37,7
41.8
46,1
56.5
55,0
59.6
64,1
68.8
73.4
78.0
82.7
87.4
92,1
96,7
101.4
106.1
30.0
32.8
36.0
39.5
43,3
47,2
51,3
55.5
59.8
64.2
68.6
73.0

7.5
82.0
86.5
91,0
95,5
100.0

0.4515
0.4405
0.4300
0.4198
.4100
0.4007
0.3919
0.3835

0.5¢681
0.5590

0,5489
0.5382
0.5270
0.5155
0,5037
0.4920
0,4802
0.4686
J.4571
0.4459
0,.4350
0,4244
0.4142
0.4045
0.3951
G,3862
0,5681
0.5613
0.5530
0,5437
0.5336
0.5229
0.5117
0.5002
0.4885
0.4768
0.4651
0.4535
0.4422
0.4310
0.4202
0.4098
0.3997
0.3901
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APPENDIX IV-A (Continued)

Angle of
Observation

Azimuthal
Angle . etc.,

Magnitude

Phase Angle

of

Energy

in Cal/vm
per min/
Steradian

4-36

30,

0

30.0

30.
30,
30.
30.
30.
30.
30,
30,

v
0
0
G
0
G
0
0

30.0

30.
30.

0
0

30,0

30.
30.
3C.
36.
30,
30,

¢
0
0
0
0
O

30,0

30,
30.
30,
30.
30.
30.
30,
30,
30,
30,
3C.,
30,
30.

Y]
Q
0
0
0
0
0
0
e
6
0
0
0

30.0

30.
30.
30.
30.
30.
30,

0
0
0
0
0
0

30.¢

30.
30,

G
0

75.0
75,0

30.
31,
33,
36.
39.
43.
46.
50,
54,
58.
62.

0
&
9
6
7
1
7
6
5
6
8

67.

71.
75.
9.
84,
88,
93.
30,
30.
31,
33.
35,
38.
41,
44,
48,
52.
56.
60,
64.
68.
72,
77.
81,
85,
30.
29.
28.
29.
30.
.9
35,
38.

32

3
6
9
3
7
1
G
4
5
p/
5
3
4
8
4
2
2
2
3
5
8
0
4
7
0
1
9
5
9

4
4

0.5681
0.5640
0.5581
0.5507
0.5420
0.5324
0.5219
0.5108
0.4993
0.4875
0.4756
0.4635
0.4516
0.4397
0.4281
0.4167
0.4057
0.3950
0.5681
0.5671
0.5639
0.5588
0.5520
0.5438
0.5344
0.5239
0.5127
0.5009
0.4886
0.4761
0.4633
0.4506
0.4379
0.4253
0.4130
0.4010
0.5681
06,5702
0.5701
0.5678
0.5634
0.5570
0.5489
0.5394



Angle of

APPENDIX IV-A (Continued)

Angle of

Azimuthal

Magnitude
of

L-37

Energy
in Cal/cm2
per min/

Incidence Observation Angle.etc. Phase Angle Steradian
30.0 40,0 105,06 41,7 0.5286
30.0 45,0 105,¢ 45.3 0,5169
30.0 50.0 105,0 49,0 0.5043
30.0 55.0 105.0 52.9 0.4911
30.0 60.0 105,0 57.0 .,4775
30.0 65.0 1G5,0 61.1 0.4636
30.0 70.0 105.0 65.3 0.4495
30.0 75.0 105.0 69.6 0.4355
30.0 80,0 105.0 73.9 0.4215
30.0 85.0 1G5.0 78.2 0.4078
30.0 0.0 120.0 30.0 (.5681
30.0 5.0 120.0 27.8 0.5733
30.0 10,0 126.0 26.3 0.5765
30.0 15.0 12¢.0 25,7 0.5773
30.0 20,0 120,0 25.9 0.5757
30,0 25,0 120,0 27.1 0.5716
30.0 30,0 120,0 29.0 0.5653
30,0 35.0 120,0 31.5 0.5569
30,0 40.0 120.¢0 34.5 0.5468
30,0 45.90 120.0 37.9 0.5352
30,0 56.0 120.06 41,6 0.5224
30.0 55.0 120.0 45,5 0.5086
30.0 60.0 12G.0 49,5 0.4939
3C.0 65.0 126.0 53.7 0.4787
30.0 70.0 120.0 57.9 0.4630
30.0 75.0 120.0 62.2 0.4470
30.0 80,0 1206.0 66.6 0.4310
30.0 85.0 126.0 71.1 0.4151
30.0 0.0 135,06 30.0 0.5681
30.0 5.0 135,0 26.7 0.5761
30.0 10.0 135,0 23.9 06,5823
30.0 15,0 135.0 21.9 0,5865
30.0 20,0 135,90 20.8 C.5882
30.0 25,0 135,0 20.9 0,5869
30.0 30.0 135.0 22,1 00,5828
30.0 35.0 135,0 24,2 0.5759
30.0 40,0 135.0 27.0 0.5666
30.0 45,0 135,0 30.4 0.5553
30.0 50,0 135,0 34,2 0.5423
30,0 55.0 135.0 38.2 0,5277
30.0 60,0 135,0 42,3 0.5120
30.0 65.0 135.0 46,7 0.4952
30.0 70,0 135,0 51.1 0.4777
30.0 75.0 135,0 55.6 0.4595




h-38

APPENDIX IV-A (Continued)

Energy
Magnitude in Cal/cm?
Angle of Angle of Azimuthal 7 of per min/

Incidence Observation Angle,etc, Phase Angle Steradian

30.0 80,0 135.0 60,1 0.4411

30.0 85.0 135,0 64,7 0.4225
30.0 0.0 150,0 30,0 0,5681
30.0 75,0 150,0 ¢ 25.8 0.5782
30,0 10,0 150,0 21,9 0.5872
30.0 15,0 . 150,0 18,5 0.5947
30,0 20,0 o 150.0 15.9 0.5999
30,0 25,0 150.0 14,6 0.6020
30.0 30,0 150.0 14,9 0.6004
30,0 35,0 150,0 16,7 0.5950
30.0 40,0 150,0 19.7 0.5865
30.0 45,0 150,0 23.3 0.5753
30.0 50,0 150,0 27.3 0.5619
30.0 55.0 150,0 31,6 0.5467
30.0 60.0 150,0 36.1 0.5298
30,0 65.0 150.0 40,7 0.5116
30.0 70.0 150,0 45,3 0,4921
30,0 75.0 150,0 50.0 0,4717
30,0 80,0 150,0 54.8 0,4507
30.0 85,0 150,0 59.5 0.4292
30,0 0.0 165.0 30.0 0.5681
30.0 5.0 165.0 25.2 0.5796
30.0 10.0 165.0 20.5 0.5905
30.0 15,0 165.0 15.9 0. 6005
30,0 20,0 165,0 11.8 0.6092
30,0 25,0 165,0 8.5 0.6153
30,0 30,0 165,0 7.5 0.6168
30.0 35.0 165,0 9.5 0.6124
30,0 40,0 165.0 13,1 0,6035
30,0 45.0 165.0 17.5 0.5918
30.0 50.0 165.0 22.1 0.5778
30.0 55.0 165.0 26.8 0.5617
30.0 60.0 165,0 : 31,6 0.5439
30,0 65.0 165.0 36.5 0,5244
30.0 70.0 165.0 41,4 0.5034
30.0 75.0 165.0 46,3 - 0.4812
30.0 80.0 165.0 51,2 0.4850
30.0 85,0 165,0 56,2 0,4342
30,0 0.0 180.0 30.0 0.5681
30.0 5,0 180.0 25.0 0,5801
30,0 10,0 180.0 20.0 ©0.5917
30.0 15,0 180.0 15,0 0.6027

30,0 20,0 180,0 10,0 0.6130



h-39

APPENDIX IV-A (Continued)

Energy
Magnitude in Cal/cm?
Angle of Angle of Azimuthal of per min/

Incidence Observation Angle,etc, Phase Angle Steradian

30.0 25,0 180,0 5.0 0.6223
30.0 30.0 180.0 0.0 0.6306
30.0 35.0 180,0 5.0 0.6220
30.0 40.0 180.0 10,0 0.6114
30.0 45,0 180.0 15,0 0.5988
30.0 50,0 180.0 20,0 0.5842
30.0 55.0 180.0 25,0 0.5677
30.0 60.0 189.0 30,0 0.5494
30.0 65.0 180.0 35,0 0.5294
30.0 70.0 180.0 40,0 0.5078
30.0 75.0 180,0 45.0 0.4849
30.0 80.0 180.0 50,0 0.4609
30,0 85.0 180.¢C 55,0 0.4361
0.0 0.0 0.0 0.0 0.6950C
0.0 5.0 0.0 5.0 0.6878
0.0 10.0 6.0 10.0 0.6792
0.0 15,0 0.0 15.0 0.6693
0.0 20.0 0.0 20,0 0.6583
0.0 25.0 0.0 25,0 0.6462
0.0 30.0 0.0 30.0 0.6333
0.0 35.0 2.0 35,0 0.6197
0.0 40.0 0,0 40.0 0.6054
0.0 45,0 0,0 45,0 0.5905
0.0 50.0 ¢,0 50.0 0.5753
0.0 55.0 0.0 55.0 0.5598
0.0 60.0 0.0 60.0 0.5442
0.0 65.0 0.0 65.0 0.5285
0.0 70,0 0,0 70.0 0.5129
0.0 75.0 0.0 75.0 0.4974
0.0 80.0 0.0 80.0 0.4822
0.0 85.0 0.0 85,0 0.4674



